

Canadian Centre canadien Light de rayonnement Source synchrotron

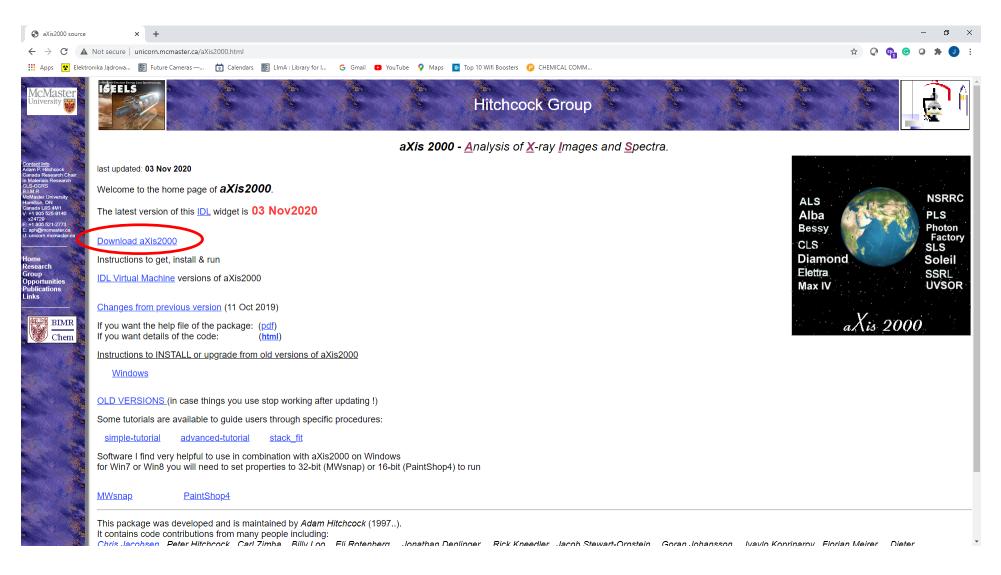
CLS STXM and Ptychography Data Analysis

Dr. Jian Wang 10ID-1 Spectro-Microscopy Beamline Canadian Light Source University of Saskatchewan December 4th, 2020

Outline

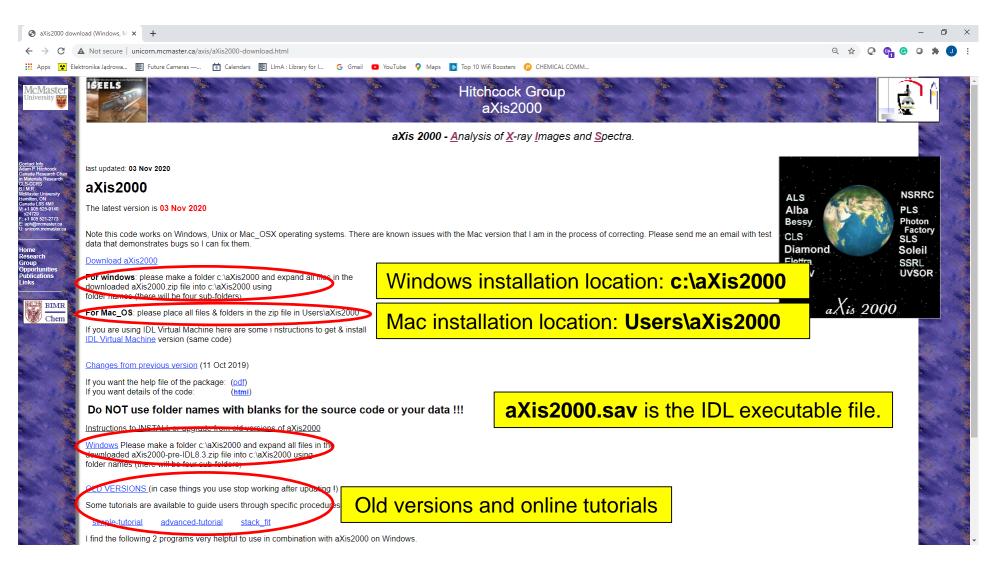
✤ aXis2000

- Installation and Introduction
- ➤ Images
- > Spectra
- ≻ Linescans
- > Stacks: alignment, spectra, mapping, fitting, etc.
- ≻ Cryo-STXM
- PyPIE: STXM-Ptychography
- PCA_GUI and Mantis
- ImageJ Plugins ScatterJ

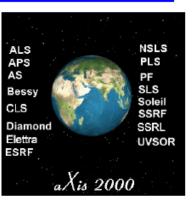


STXM and Ptychography Data Analysis Software

- aXis2000, Interactive Data Language (IDL) Virtual Machine, <u>http://unicorn.mcmaster.ca/aXis2000.html</u>.
- Other IDL based: stack_analyze.sav, pca_gui.sav
- Python based: Mantis 2.3.02
- Ptychography: PyPIE, Sharpcamera, PtychoLib, etc.
- Other imaging processing: ImageJ and plugins, MATLAB, etc.
- Other spectroscopy processing: Athena, Fityk 0.9.8


aXis2000 – Analysis of X-ray Images and Spectra

Canadian Centre canadien Light de rayonnement Source synchrotron


aXis2000 – Analysis of X-ray Images and Spectra

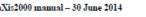
aXis 2000 <u>A</u>nalysis of <u>X</u>-ray microscopy <u>I</u>mages and <u>S</u>pectra (30 June 2014)

aXis2000 - <u>Analysis of X</u>-ray microscopy <u>Images and</u> <u>Spectra - is an <u>IDL widget</u> for viewing, comparing and processing X-ray microscopy images and spectra. IDL stands for <u>Interactive Data Language</u>, a scientific computing platform developed by Research Systems Inc (RSI), currently part of Exelis Visual Information Solutions (<u>http://www.exelisvis.com/</u>). aXis2000 contains scripts developed by Chris Jacobsen, Carl Zimba, Adam Hitchcock and others. The widget platform was written by Adam & Peter Hitchcock. It is maintained and occasionally updated by Adam Hitchcock. It can be obtained from</u>

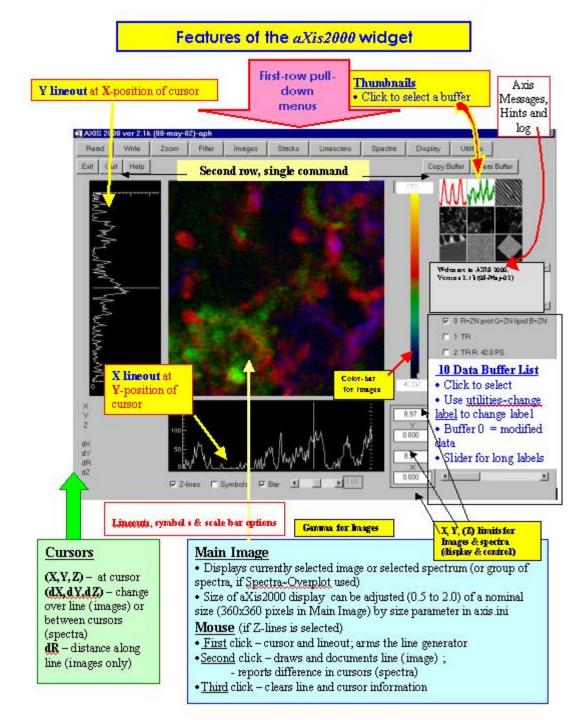
<u>unicorn mcmaster.ca/aXis2000</u>. It operates on Windows (WIN), Unix (X) and Macintosh (MAC) versions of IDL, although there are problems at

present with operating it on a Mac, if you use IDL 7.0 and later versions.

Since May-04 a compiled version (aXis2000.sav) for use with <u>IDL Virtual Machine</u> has been available. This allows access to the power of aXis2000 without needing to purchase an IDL license. Please note that there are often features of aXis2000 that work with the licensed version, but not with the VM version, and that the specific details of these problems depend on the version of both IDL and aXis2000.


I would appreciate it if you would notify me by email (aph@mcmaster.ca) about problems with the code or if you wish to make suggestions for improvements. If you make extensions or corrections, I would appreciate receiving a copy of your code revisions with sample data, so I can evaluate and incorporate in future versions.

I thank all the people who have written scripts that went into this. Carl Zimba (Photons Unlimited) who supplied ZSTACK and extensively improved the overall package in 2000; my son, Peter who helped set up the basic widget structure; Eli Rotenberg, Jonathan Denlinger, Stefano Cerasari, Tolek Tyliszczak, Andy Smith, Andreas Scholl, Göran Johansson, Jacob Stewart Ornstein, and many others. SPECIAL thanks to Chris Jacobsen (Stony Brook, nsls) for sharing his STACK_ANALYZE and PCA_GUI codes, Rick Kneedler, for providing the basis for the stack-fit routine, and Billy Loo (UCSF) for providing SF, the Henke mass absorption routine and the Conjugate Gradient Optimization routine (ax_cgo).


TO START aXis2000: after <u>installing aXis2000</u> (see end of this file) Windows and Mac OS: Start IDL ; If you have set the <u>Preferences</u> (in IDL) so that axis2000_batch.pro is the start file, aXis2000 will launch automatically. Otherwise, type axis2000 on the IDL command line. If you quit aXis2000 and stay in IDL, you can restart by typing axis2000

1

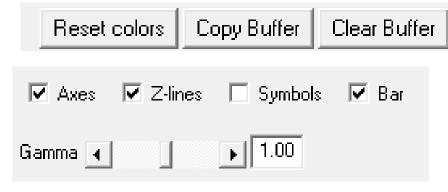
aXis2000.doc (Word)

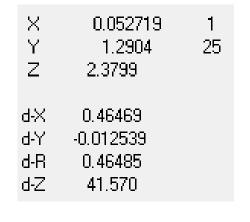
aXis2000 GUI Structure

- Think of as a **TOOLBOX** rather than a **Workflow** (Mantis is workflow oriented)
- User can follow pre-set sequence(s)

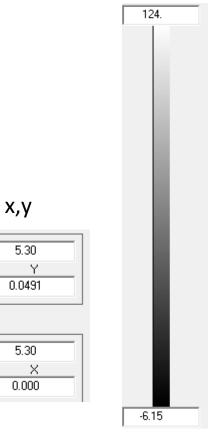
Tutorials on web site http://unicorn.mcmaster.ca/aXis2000.html (rather dated!!) **aXis2000 Manual** (Help) describes function of each button, not workflow

Top level menus organized by **process** (read/write/zoom/filter/utilities) and by **type of data**: images / stacks/linescans/spectra

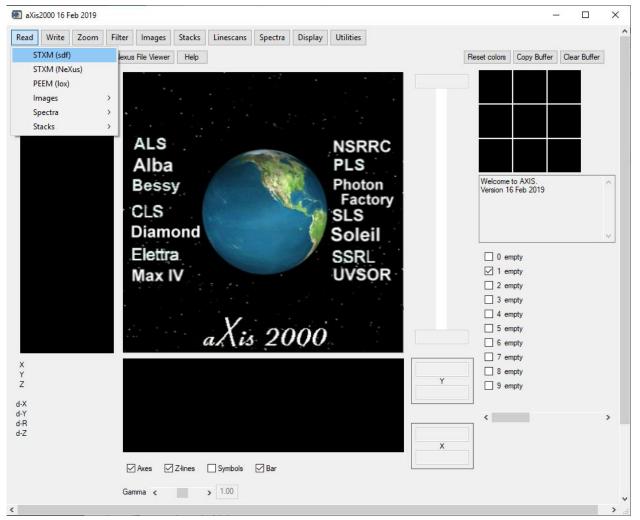



Main panel features

Centre canadien


synchrotron

Source


intensity

aXis2000 - Read Data

- Read → STXM (sdf), for standard CLS Ambient-STXM data files
- Read → STXM (NeXus), for CLS Cryo-STXM data files
- **Read** → **PEEM (lox)**, for CLS PEEM data files
- Read → Images, for many other synchrotron instruments data files, graphics files, etc.
- Read → Spectra, for many other synchrotron instruments data files, text files, etc.
- Read → Stacks, for many other synchrotron instruments data files

Ambient-STXM Data Format

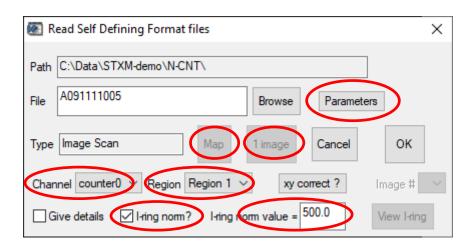
Header File: e.g. A091111005.hdr,

Scans, STXM, and Beamline settings

A091111005.hdr - Notepad	-		×
Eile Edit Format View Help			
 ScanDefinition = { Label = "A091111005.hdr"; Type = "Image Scan"; Flags = "Image"; Dwell = 1.095; Regions = (1, {			
PAxis = { Name = "Sample X"; Unit = "um"; Min = -196.629; Max = -186.629; Dir Points = (250, -196.629, -196.589, -196.549, -196.549, -196.469, -196 629, -192.589, -192.549, -192.509, -192.469, -192.429, -192.389, -192.349, -192.309, -192.269, -192. -188.509, -188.469, -188.429, -188.389, -188.349, -188.309, -188.269, -188.229, -188.189, -188.149, - };	.429, - 29, -19	2.189,	-
QAxis = { Name = "Sample Y"; Unit = "um"; Min = 4796.553; Max = 4806.553; Dir Points = (250, 4796.553, 4796.593, 4796.633, 4796.673, 4796.713, 4796 553, 4800.593, 4800.633, 4800.673, 4800.713, 4800.753, 4800.793, 4800.833, 4800.873, 4800.913, 4804.9 4804.673, 4804.713, 4804.753, 4804.793, 4804.833, 4804.873, 4804.913, 4804.953, 4804.993, 4805.033, 4 }; };	.753, 4 53, 480	0.993,	4
<pre>StackAxis = { Name = "Energy"; Unit = "eV"; Min = 300.003; Max = 300.003; Dir = -1; Points = (1, 300.003); };</pre>			
Channels = (1, { Name = "counter0"; Unit = "counts";}); };			
'Time = "2009 November 11 22:50:37"; BeamFeedback = false; ShutterAutomatic = true; Channels = (1, { ID = 1; Type = 0; Name = "counter0"; Controller = 0; DeviceNumber = 0; UnitName = "counts"; LinearC	oeffici	ent =	1;
Monochromator = { Name = "Energy"; LastPosition = 300.002; Status = 1; Type = 1; ControllerID = 63; V	/el = 0;	};	
EntranceSlit = { Name = "M3STXMPitch"; LastPosition = 3.064; Status = 0; Type = 1; ControllerID = 67;	Vel =	1;};	
ExitVSlit = { Name = "SlitX"; LastPosition = 30.1; Status = 1; Type = 1; ControllerID = 62; Vel = 200	;};		
ExitHSlit = { Name = "SlitY"; LastPosition = 30.2; Status = 1; Type = 1; ControllerID = 61; Vel = 200	;};		
SampleFineX = { Name = "SampleX"; LastPosition = -184.33349; Status = 0; Type = 0; ControllerID = 41;	Vel =	1;};	
SampleFineY = { Name = "SampleY"; LastPosition = 4796.5631; Status = 0; Type = 0; ControllerID = 42;	Vel = 1	;};	
SampleFineZ = { Name = "SampleFineZ"; LastPosition = -25.004884; Status = 0; Type = 0; ControllerID =	40; Ve	1 = 1;	};
SampleCoarseX = { Name = "CoarseX"; LastPosition = -166; Status = 0; Type = 1; ControllerID = 82; Vel	= 1.9;	};	
SampleCoarseY = { Name = "CoarseY"; LastPosition = 4832.2; Status = 0; Type = 1; ControllerID = 83; V	el = 0.	5;};	
SampleCoarseZ = { Name = "CoarseZ"; LastPosition = 819; Status = 0; Type = 1; ControllerID = 11; Vel	= 1;};		
ZonePlateZ = { Name = "ZonePlateZ"; LastPosition = -1162.7178; Status = 1; Type = 1; ControllerID = 8	8; Vel	= 600;	}; ~
Windows (CRLF) Ln 1, Col 1 10	0%		

Canadian Centre canadien Light de rayonnement Source synchrotron

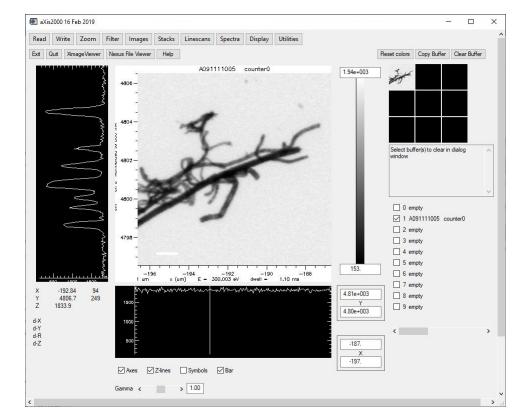
Image Data File:


e.g. A091111005_a.xim

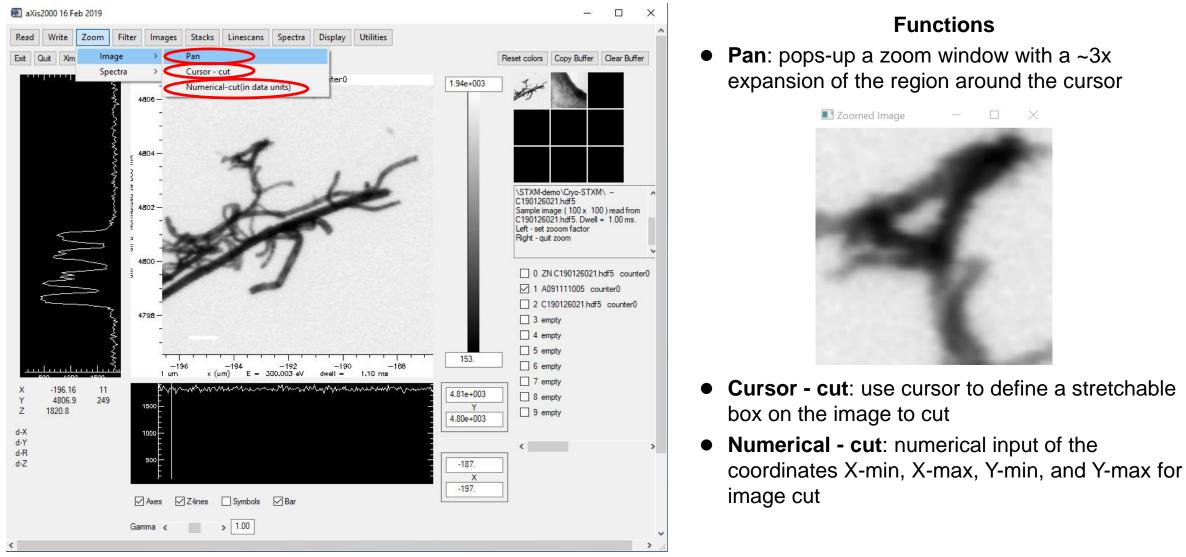
<u>File</u> <u>E</u> c	lit F <u>o</u> rmat	<u>V</u> iew <u>H</u>	elp											
541	539	551	548	551	543	550	562	539	566	566	574	558	566	57
566	550	558	562	554	561	554	561	559	551	569	569	553	541	54
548	556	548	546	542	557	562	544	542	556	546	562	552	539	53
566	569	551	527	570	556	563	557	559	535	554	556	554	560	56
561	545	552	563	554	554	546	553	578	575	553	561	550	544	55
552	547	560	567	535	558	559	563	554	567	555	564	554	547	55
565	545	562	572	554	554	570	565	545	542	549	551	558	547	56
563	554	555	557	561	552	557	538	545	534	541	536	565	541	55
538	555	567	542	562	551	552	565	555	563	568	561	557	545	55
545	544	567	567	559	561	564	558	553	556	563	557	564	552	56
544	545	557	539	560	570	549	544	568	549	541	547	565	545	54
550	565	552	536	536	565	553	563	563	557	558	549	566	554	53
548	581	562	559	568	571	570	564	549	554	551	566	565	557	54
543	542	543	562	557	548	545	536	537	548	565	537	553	550	56
552	553	544	552	559	550	567	560	557	545	547	549	550	552	55
554	569	563	552	545	546	545	553	553	546	551	552	550	556	55
544	550	556	544	556	563	571	557	557	558	558	563	561	552	54

Spectrum Data File: e.g. A100219012_0.xsp

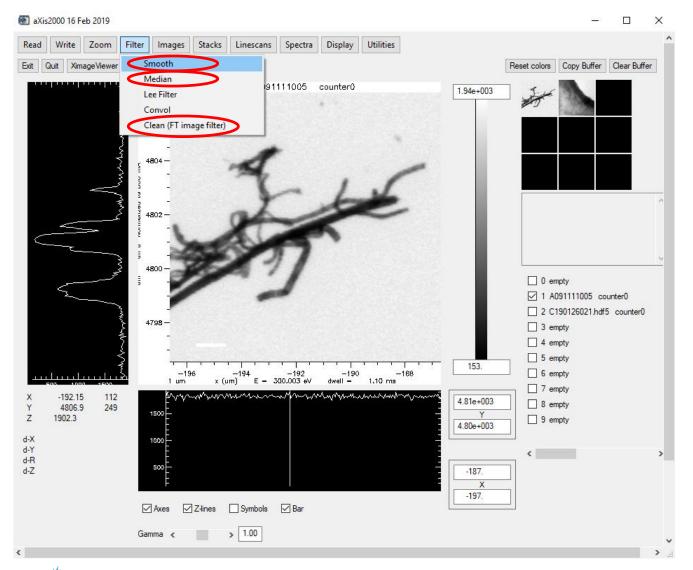
A100219012_0.xsp - Notepad	-	×
Eile Edit Format View Help		
B95 472473		^
395.196 474819		
395.392 472304		
395.588 473986		
395.784 472452		
395.98 472916		
396.176 469059		
396.372 469666		
396.568 468513		
396.764 467277		
396.96 468773		
397.156 467601		
397.352 468312		
397.548 467831		
397.744 466367		
397.94 464330		
398.136 460334		
398.332 450769		
398 528 441331		


aXis2000 – Read Ambient-STXM Images

- Parameters: access all information in the header file
- Map: obtain a two-image subtraction map directly without alignment
- 1 image: read an image from a selected photon energy for a stack
- Channel: select data channel if more than one detector is used
- **Region**: select sample region if more than one image region is defined
- I-ring norm?: normalization to I-ring
- I-ring norm value: CLS 220 mA



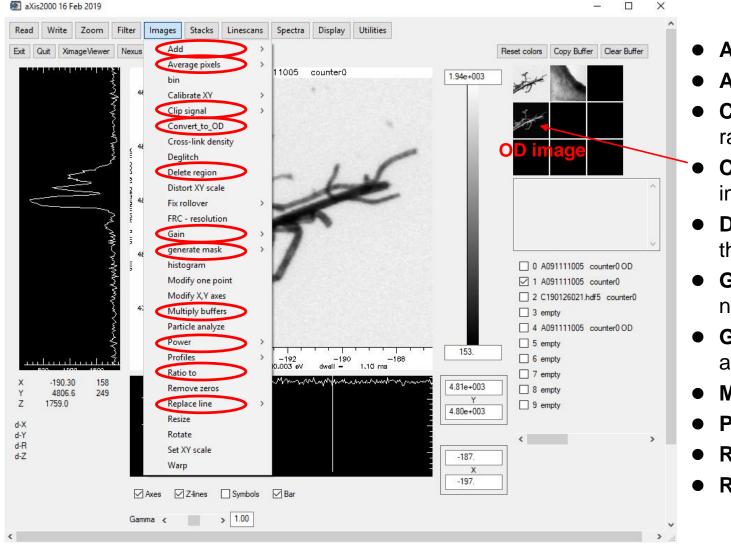
Canadian Centre canadien Light de rayonnement Source synchrotron


- First click on image: select the starting point
- Second click on image: select the ending point, then calculate the d-X, d-Y, d-R, and d-Z of the two points
- Third click on image: clear the selected points

aXis2000 – Image Zoom

aXis2000 – Image Filter

Centre canadien


synchrotron

Source

de ravonnement

- Smooth: Boxcar average over n-points
- Median: n-point Savitsky-Golay averaging
- Clean (FT image filter): 2d-FT filter. The FT is displayed on a 1:1 pixel format.

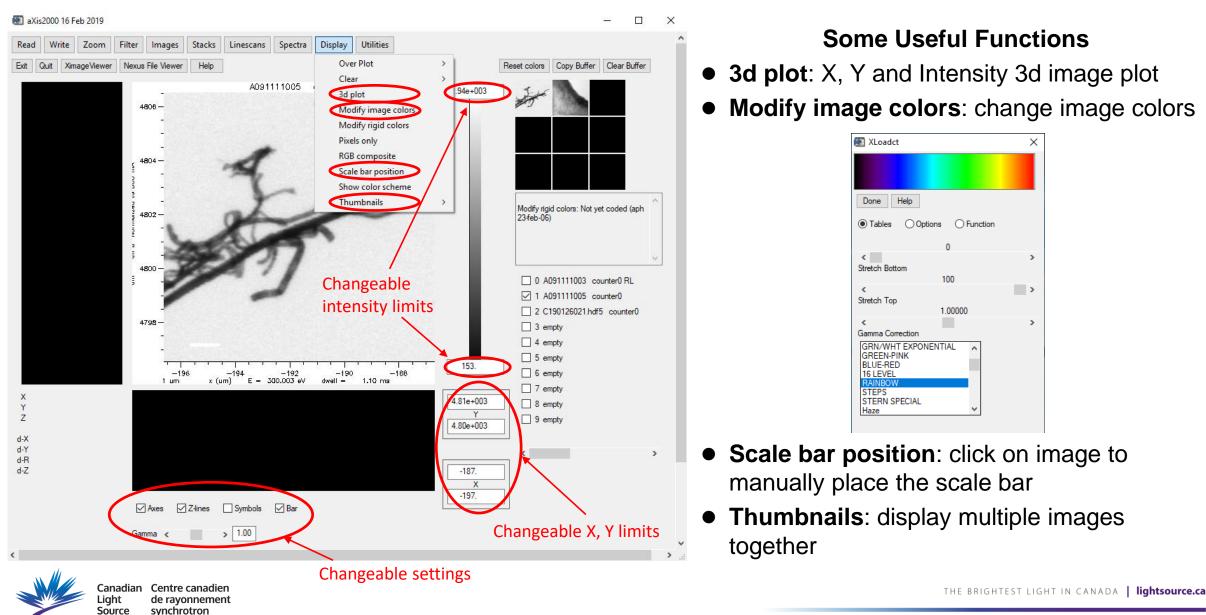
aXis2000 – Image Processing

Centre canadien

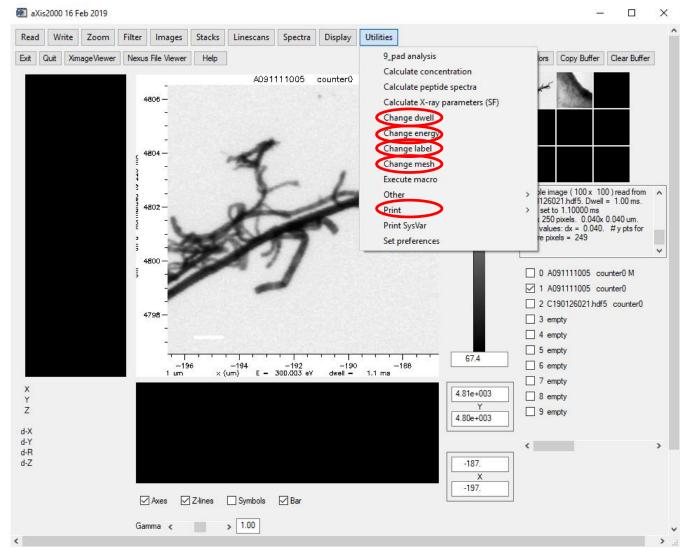
synchrotron

Source

de ravonnement


Some Useful Functions

- Add: add/append image or constant
- Average pixels: average image or region pixels
- **Clip signal**: two clicks to select image intensity range
- **Convert_to_OD**: normalize to the maximum intensity value of the image
- **Delete region**: select an image region and replace the intensity value by arbitrary number
- Gain: multiply or divide the image intensity by a number
- Generate mask: threshold the image intensity as 0 and 1
- Multiply buffers: multiple two images
- **Power**: power the image intensity
- Ratio to: divided by another image
- Replace line: remove bad/black lines

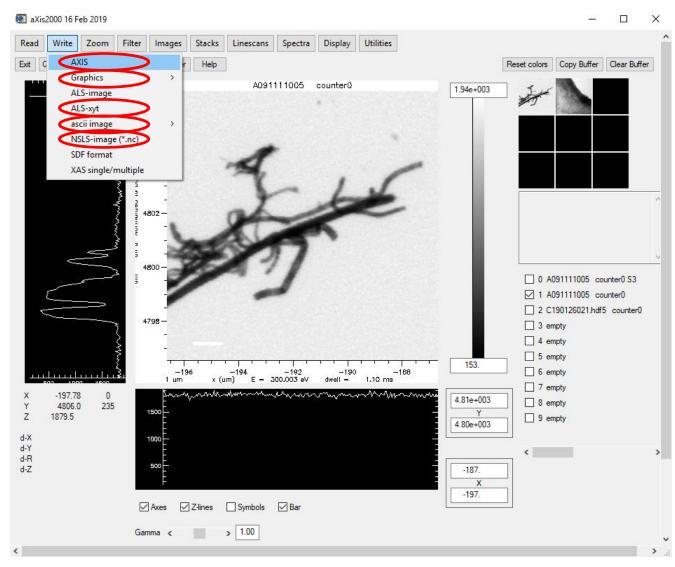


14

aXis2000 – Image Display

aXis2000 – Image Utilities

Some Useful Functions


- Change dwell: change image dwell time
- Change energy: change image photon energy
- Change label: change label for image or other files like spectra
- Change mesh: change image X and Y pixel number
- Print: print image or other files like spectra with or without IDL annotation

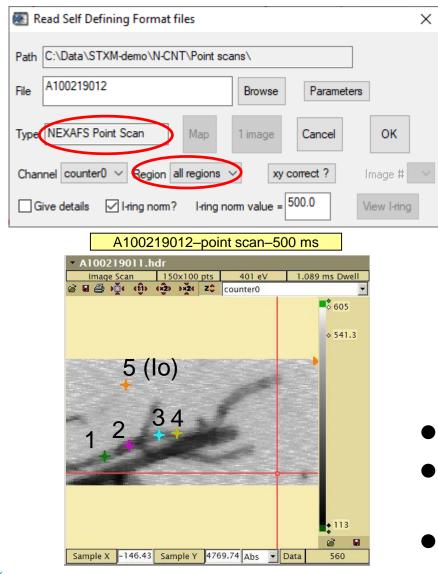
Centre canadien

synchrotron

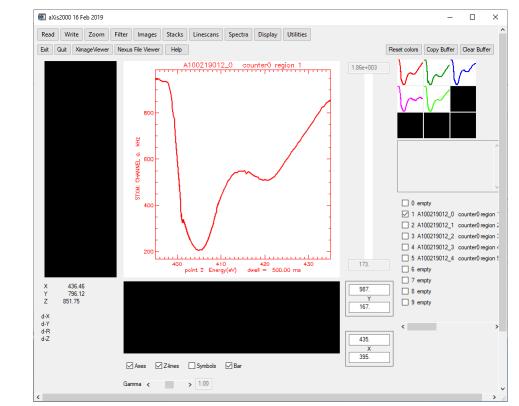
de ravonnement

aXis2000 – Write Images

Some Useful Functions

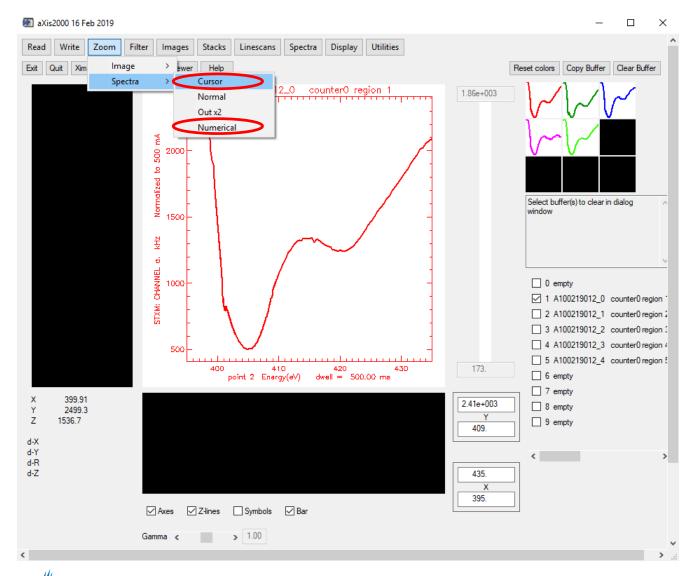

- **AXIS**: images written into *.axb binary format
- **Graphics**: images written into graphics formats, such as GIF, JPG, PNG and TIF, with and without axes or labels
- ALS-xyt: images written into X, Y, intensity, X-pixel, and Y-pixel
- **ascii image**: images written into coordinates, and 2d array of image intensity
- NSLS-image (*.nc): images written into NSLS netCDF image format (*.nc)

aXis2000 - Read Ambient-STXM Point Spectra


Centre canadien

synchrotron

de ravonnement


anadian

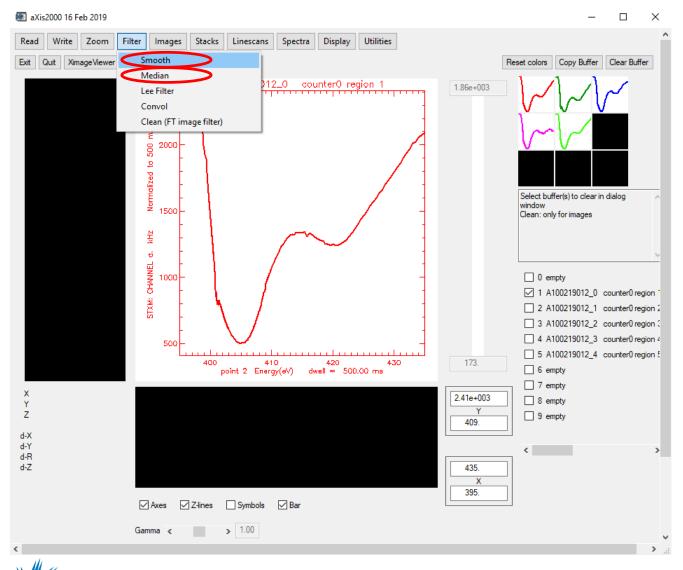
Source

- First click on spectrum: select the starting point
- Second click on spectrum: select the ending point, then calculate the d-X, d-Y, and d-Z of the two points
- Third click on spectrum: clear the selected points

aXis2000 – Spectrum Zoom

anadian

Source


Centre canadien

synchrotron

de ravonnement

- Cursor: use cursor to define a stretchable box on the spectrum to cut
- Numerical: numerical input of the limits of X-min, X-max, Y-min, and Y-max for spectrum cut

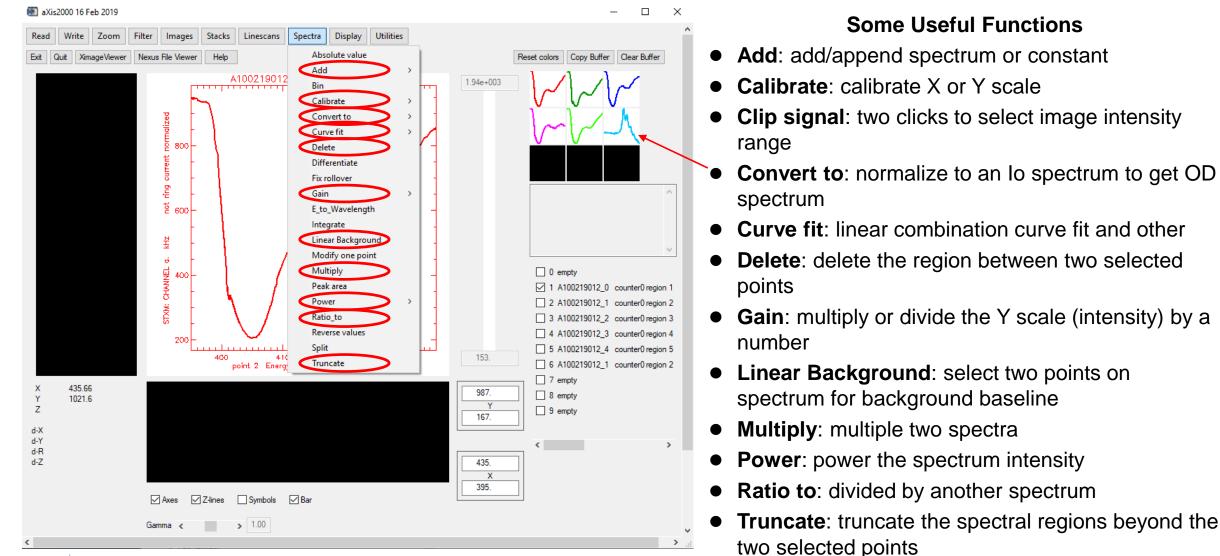
aXis2000 – Spectrum Filter

Centre canadien

de rayonnement synchrotron

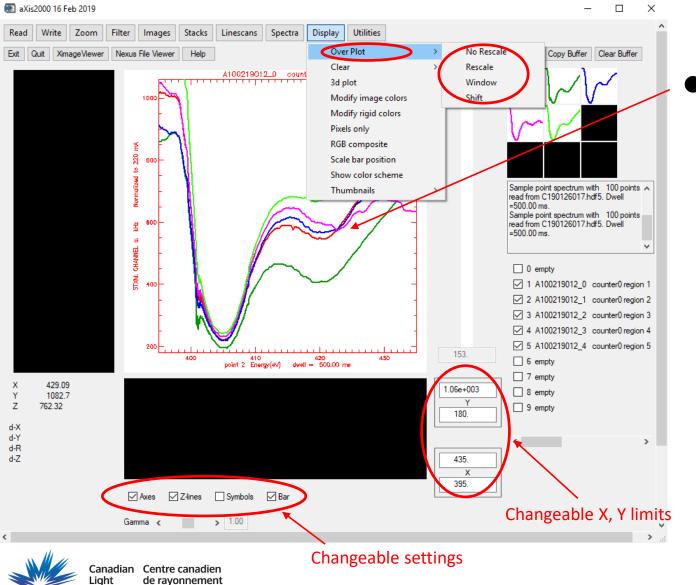
Canadian

Source


Some Useful Functions

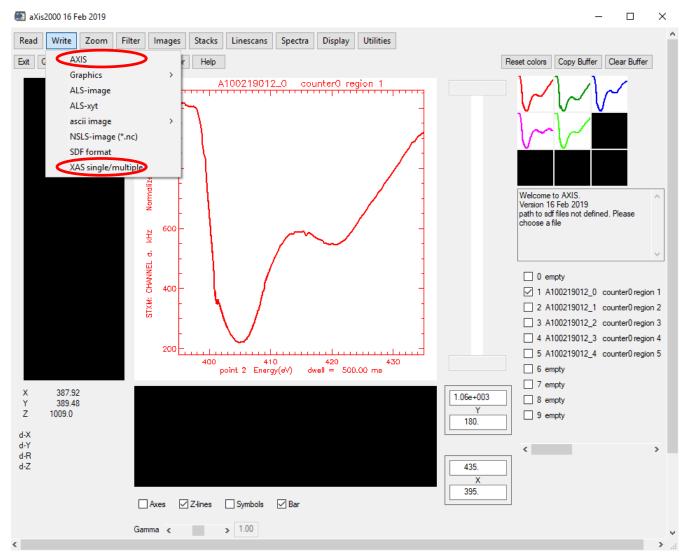
- Smooth: Boxcar average over n-points
- Median: n-point Savitsky-Golay averaging

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca


21

aXis2000 – Spectrum Processing

aXis2000 – Spectrum Display


synchrotron

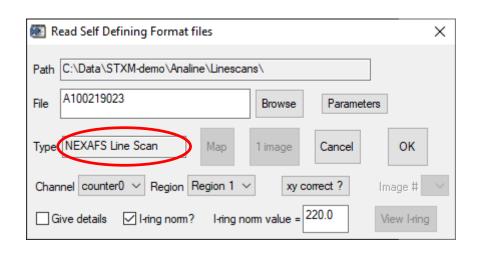
Source

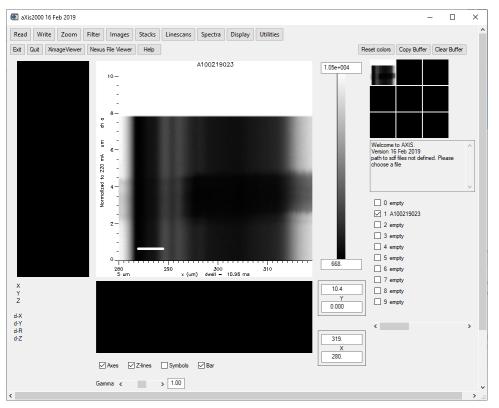
Some Useful Functions

 Over plot: display multiple spectra on the same plot based on No Rescale, Rescale, Window, and Shift

aXis2000 - Write Spectra

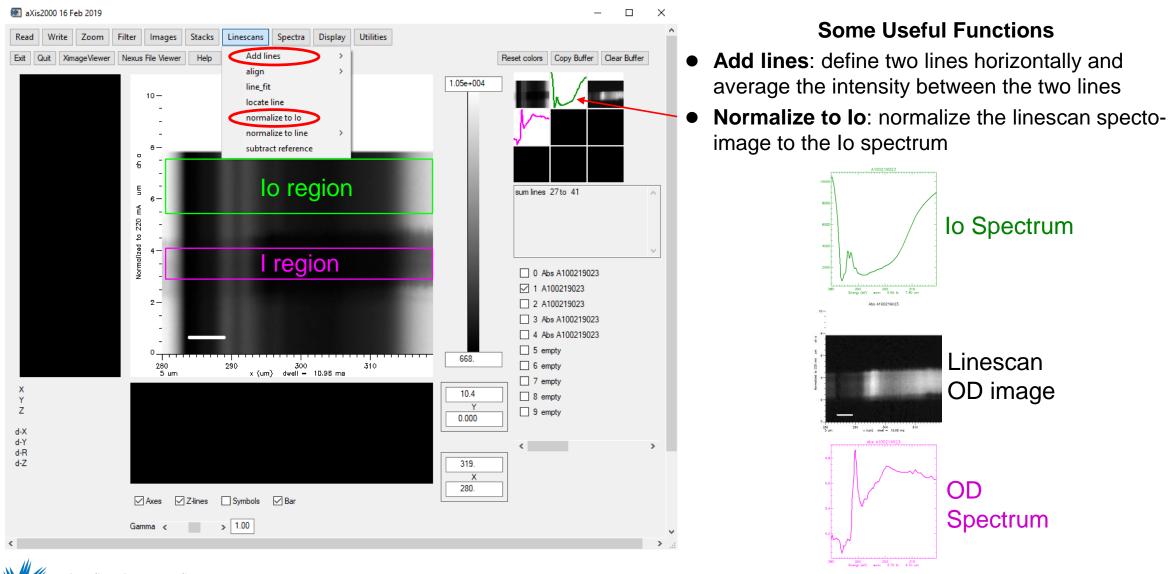
Some Useful Functions


- AXIS: spectra written into *.txt ASCII format
- XAS single/multiple: images written into NSLS XAS format (*.xas)



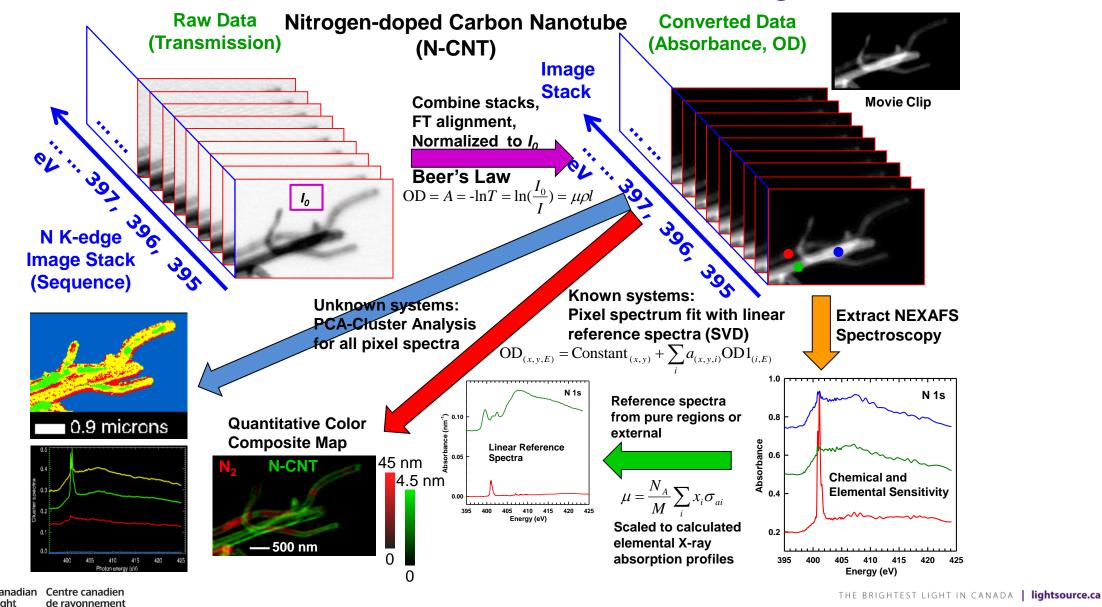
Linescans

aXis2000 – Read Ambient-STXM Linescans



- First click on spectrum: select the starting point
- Second click on spectrum: select the ending point, then calculate the d-X, d-Y, and d-Z of the two points
- Third click on spectrum: clear the selected points

aXis2000 – Linescans Processing



Canadian Centre canadien Light de rayonnement Source synchrotron

Stacks

STXM Stacks Data Processing

J. Zhou, J. Wang et al. J. Phys. Chem. Lett. 1 (2010) 1709.

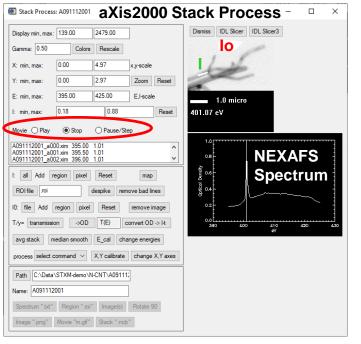
Source

synchrotron

STXM Data Analysis File Naming Symbols and Rules

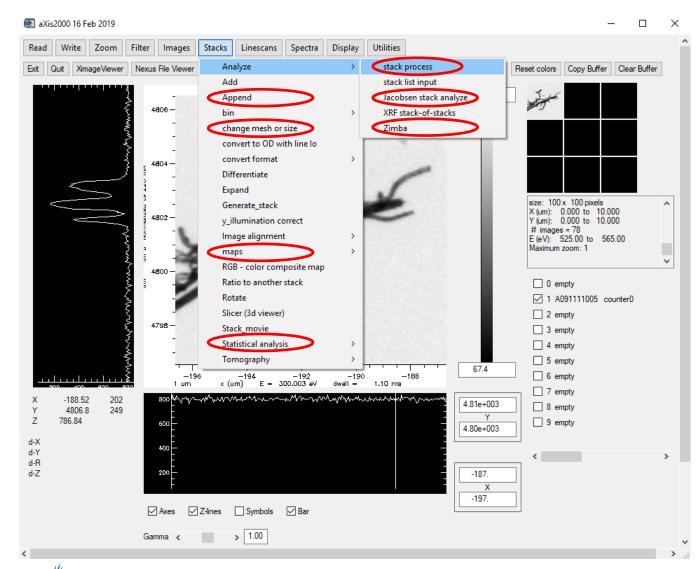
Symbols	Description	Examples				
Α	designate letter for CLS Ambient-STXM data	A161216053.ncb				
C	designate letter for CLS Cryo-STXM data	C160927034.ncb				
only file number	raw transmission data	A161216053.ncb				
а	aligned stack	A161216053a.ncb				
aod	aligned stack, then converted to od stack	A161216053aod.ncb				
avg	averaged stack image or spectrum	A161216053aod-avg.ncb				
c, cali	energy calibrated	A161216053aodc.ncb, or A161216053caod.ncb				
cl, clip	clipped, cleaned	A161216053aodc-clip.ncb				
ls, l	linescan	IsA161216052.txt				
m	remeshed	A161216053aodm.ncb				
map	chemical map	A161216051aod-map.ncb				
mask	stack mask	A161216053aod-mask.ncb				
n	normalized	A161216053aodn.ncb				
od	optical density	A161216050od.axb				
od1	optical density per nm	A161216053od1-FeO.txt				
oda	optical density stack, then aligned	A161216053oda.ncb				
р	part of the stack	A161216053aodp.ncb				
sm	smoothed spectrum, image	A161216056od-sm-FeO.txt				
sf	elemental absorption profile	FeO-sf-od1.txt				
t	truncated spectum, stack, clipped stack	A161216053aodt.ncb				
x	point scan	xA161216055od.txt				
Original File Types	Derived File Types	Naming Rules				
Images	Image	A/C + date + sequence number + symbols (+ sample)				
Point Scans	Spectrum	x + A/C + date + sequence number + symbols (+ sample)				
Linescans	Spectrum	Is + A/C + date + sequence number + symbols (+ sample)				
Linescans	Spectrum-Image	Is + A/C + date + sequence number + symbols (+ sample)				
	Stack	(A/C + date +) sequence number + symbols (+ sample)				
Stacks	Image	(A/C + date +) sequence number + symbols + sample				
JIAUNS	Мар	(A/C + date +) sequence number + symbols + sample				
	Spectrum	(A/C + date +) sequence number + symbols + sample				

aXis2000 – Read Ambient-STXM Stacks


🐼 Read Self Defining Format files	×				
Path C:\Data\STXM-demo\N-CNT\A091112001-N1s\					
File A091112001 Browse Parameters					
Type NEXAFS Image Scan Map 1 image Cancel OK					
Channel counter0 V Region Region 1 V xy correct ? Image # 395.00	· ~				
Give details I ring norm? I ing norm value = 220.0 View I-ring					

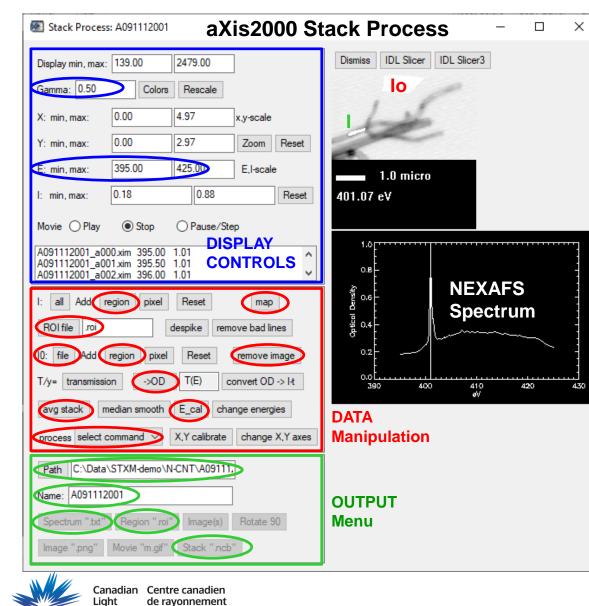
A091112001.dat -	Notepad	- 0	×	
<u>F</u> ile <u>E</u> dit F <u>o</u> rmat	<u>V</u> iew <u>H</u> elp			
167	99	1.00000	^	
0.00000	4.97000			
0.00000	2.97021			
90				
395.000				A091111001.dat
395.500				,
396.000				
396.500				
397.000				
397.500				
398.000			~	
<			>	
	Winde	ows Ln 1, Col	100%	

- Compile raw Ambient-STXM stack data: aXis2000 \rightarrow Read \rightarrow STXM (sdf)
- Give a stack file name, then generate two files:
 - One *.dat file that has stack dimensions, pixel numbers, and photon energies
 - > One *.ncb binary stack data file
- Uncheck "I-ring norm?" if ring current information is missing or wrong for some images.
- After stack compiling, the aXis2000 Stack Process will be automatically launched with inputting a "suggested zoom" number
- Play movie in "Stack Process" to check if the stack is complete in images/energies.



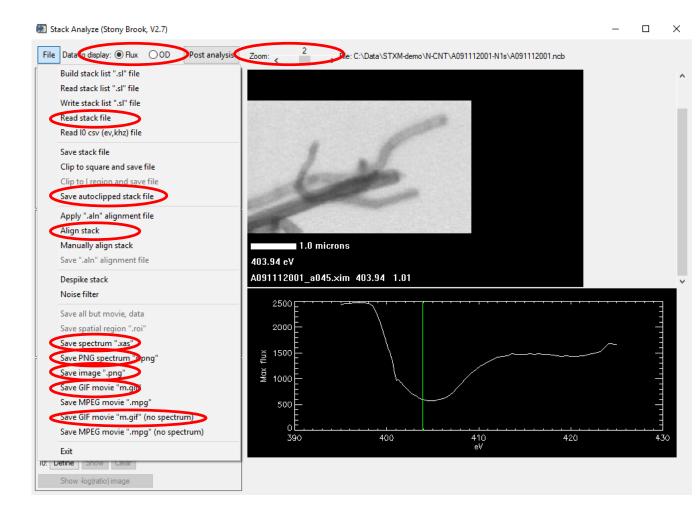
Canadian Centre canadien Light de rayonnement Source synchrotron

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca


aXis2000 - Stacks

- Stack process: stack data display, manipulation, and output
- Jacobsen stack analyze: stack data display, alignment, manipulation, and output
- **Zimba**: stack data build, display, alignment, manipulation, and output
- **Append**: append two stacks with the same pixel and physical dimensions
- Change mesh or size: change stack pixel number or physical size
- Maps: perform fitting like SVD or Stack fit for the stack, and other fittings
- Statistical analysis: PCA analysis

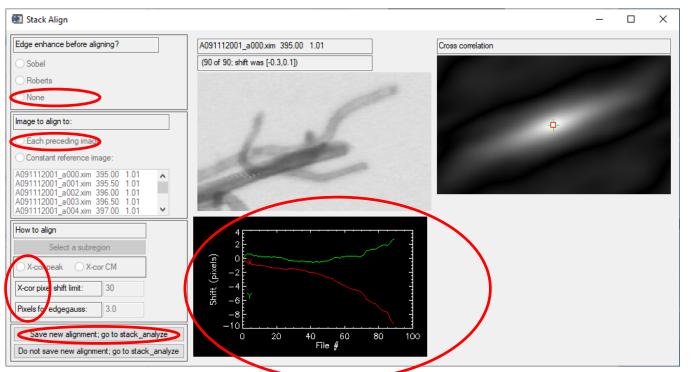
aXis2000 – Stack Process



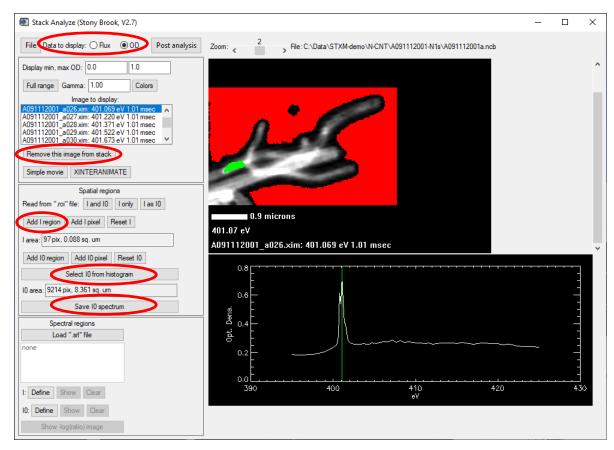
Source

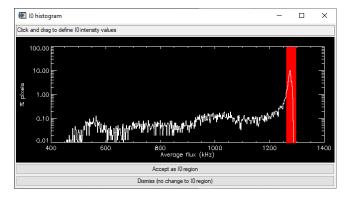
synchrotron

- Gamma: change image Gamma value
- E: define stack energy range
- I: region: select sample region
- I: ROI file: load a sample ROI region file
- I: map: generate a two image subtraction map
- IO: file: load an lo file
- IO: region: select an lo region
- **IO: remove image**: delete an image of stack
- ->OD: convert to OD stack
- Avg stack: average all stack images
- **Process**: multiple math process for stack
- Path: saving path, no space in folder names
- Name: file name for output, click "enter" to activate the output menu buttons
- Spectrum, Region, Stack: commonly saved file types


Stack Analyze (Stony Brook, V2.7)

- Flux/OD: display in flux (transmission) or OD (absorption) format
- **Zoom**: select the zoom factor for the stack images
- Read stack file: read a stack and choose
 *.ncb format
- Save autoclipped stack file: after iterations of alignment, save autoclipped stack file before select lo region.
- Align stack: launch the "Stack Align" widget, then process stack alignment
- Save spectrum, image, and movie in formats except the "mpg" format that requires IDL licence


Stack Analyze (Stony Brook, V2.7) – Stack Align



- Edge enhance before aligning: choose "None" for most cases unless the image contrast is very poor.
- Image to align to: choose "Each preceding image" for most cases; or choose a best contrast image for some cases; use the same reference image for all alignment iterations.
- Use other default settings unless the alignment is very challenging.
- Save new alignment; go to stack_analyze: after each alignment, save the alignment back to the stack without a separate alignment file.
- Align the stack until the X-Shift and Y-Shift are zero and fully overlapped, or smaller than 1 pixel.

Stack Analyze (Stony Brook, V2.7)

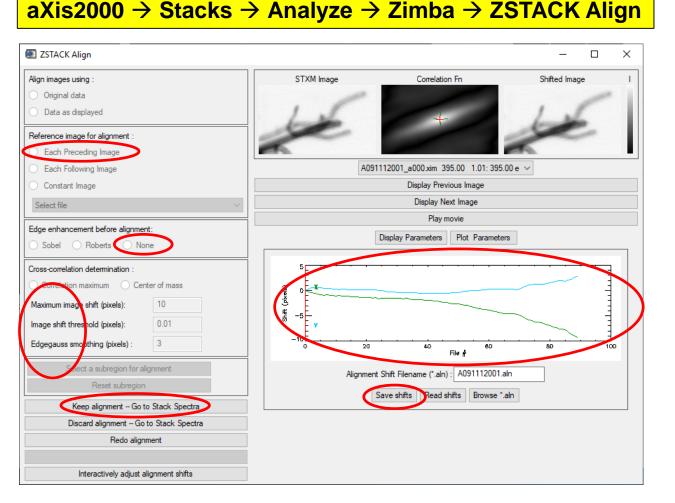
Some Useful Functions

- Flux/OD: display in flux (transmission) or OD (absorption) format
- Remove this image from stack: delete bad images or unwanted images even before stack alignment
- Add I region: select a sample region to check NEAXFS spectroscopy
- Select I0 from histogram: select the highest intensity peak for lo, as shown in the window above
- Save I0 spectrum: save the lo spectrum in *.xas format

stack_analyze.sav \rightarrow File \rightarrow Read stack file; File \rightarrow Align stack \rightarrow Save autoclipped stack file \rightarrow Select I0 from histogram (click-hold-drag) \rightarrow Save I0 spectrum

aXis2000 – Stacks – Zimba

aXis2000 \rightarrow Stacks \rightarrow Analyze \rightarrow Zimba

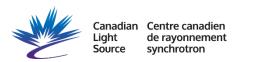

Directory: C:\Data\STXM-demo\N-CNT\A09111200					
Select from directory A091112001_a000.xim 395.00 395.00 eV 31.389 A 99 rows X 167 cols 0 msec dwell Display Previous Image Display Next Image Play movie Display Parameters	A09 A09 A09 A09 A09 A09 A09 A09 A09 A09	A091112001_a001.xim 395.50 A091112001_a002.xim 396.00 A091112001_a003.xim 396.50 A091112001_a004.xim 397.00 A091112001_a005.xim 397.50 A091112001_a006.xim 398.00 A091112001_a007.xim 398.20 A091112001_a009.xim 398.55 A091112001_a010.xim 398.65 A091112001_a010.xim 398.65 A091112001_a011.xim 398.80 A091112001_a011.xim 398.91 A091112001_a013.xim 399.11 A091112001_a014.xim 399.26 A091112001_a015.xim 399.51 A091112001_a017.xim 399.71 A091112001_a017.xim 399.71 A091112001_a018.xim 399.86 A091112001_a017.xim 399.71 A091112001_a012.xim 400.31 A091112001_a022.xim 400.46 A091112001_a022.xim 400.46 A091112001_a023.xim 400.62 < Binary Filename (*.ncb) : A0911 Read *.ncb Bro	95.50 1.0 96.00 1.0 96.50 1.0 97.00 1.0 97.50 1.0 98.20 1.0 98.20 1.0 98.35 1.0 98.45 1.0 98.50 1.0 98.45 1.0 98.50 1.0 98.45 1.0 99.41 1.0 99.56 1.0 99.56 1.0 99.41 1.0 99.56 1.0 99.56 1.0 99.56 1.0 99.56 1.0 99.56 1.0 99.56 1.0 99.56 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 1.0 99.71 </td <td>1: 396.50 eV 1: 397.00 eV 1: 397.50 eV 1: 398.00 eV 1: 398.20 eV 1: 398.35 eV 1: 398.50 eV 1: 398.65 eV 1: 398.65 eV 1: 399.26 eV 1: 399.26 eV 1: 399.56 eV 1: 399.71 eV 1: 399.86 eV 1: 399.71 eV 1: 399.86 eV 1:</td> <td></td>	1: 396.50 eV 1: 397.00 eV 1: 397.50 eV 1: 398.00 eV 1: 398.20 eV 1: 398.35 eV 1: 398.50 eV 1: 398.65 eV 1: 398.65 eV 1: 399.26 eV 1: 399.26 eV 1: 399.56 eV 1: 399.71 eV 1: 399.86 eV 1: 399.71 eV 1: 399.86 eV 1:	
Set as first Set as last	Filename (*.sl):		00.46 1.0	1.01: 400.46 eV 1.01: 400.62 eV 112001.ncb	, v

Some Useful Functions

- Browse *.ncb: browse and open a *.ncb stack
- List is complete: after loading the stack, click "List is complete" to move to the "ZSTACK Align" widget


aXis2000 – Stacks – Zimba – ZSTACK Align

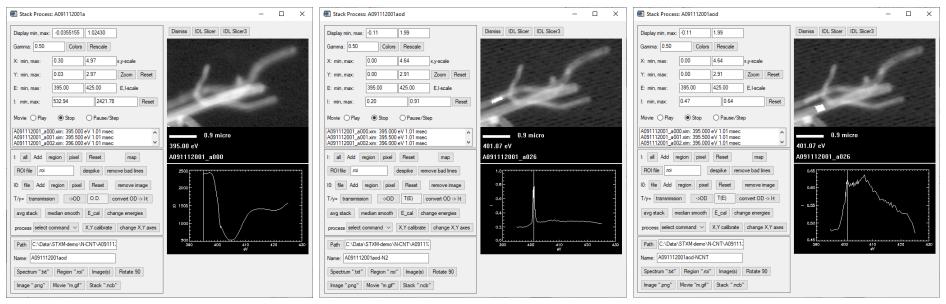
Some Useful Functions


- **Reference image for alignment**: choose "Each Preceding Image" for most cases; or choose a best contrast image for some cases; use the same reference image for all alignment iterations.
- Edge enhancement before alignment: choose "None" for most cases unless the image contrast is very poor.
- Use other default settings unless the alignment is very challenging.
- Start auto-alignment: you will see this function before alignment
- Skip alignment: you will see this function before alignment; click this button if alignment was done by other software
- Keep alignment Go to Stack Spectra: after alignment, move on to "ZSTACK Spectra"
- Save shifts: after each alignment, need to save an alignment file *.aln
- Align the stack until the X-Shift and Y-Shift are zero and fully overlapped, or smaller than 1 pixel.

aXis2000 – Stacks – Zimba – ZSTACK Spectra

Some Useful Functions

- Add I0 region: select an empty region without sample for lo; if the stack is already OD stack, don't need to select an lo region.
- Add I region: can select multiple sample regions
- **Base filename**: for convenience, just use stack file name
- Select "xas (tab-separated)" and "File for each spectrum", then click "Save Spectra". Note the saved spectra are transmission spectra including lo spectrum if the stack is transmission stack; and for an OD stack, the saved spectra are OD spectra.
- Give a region of interest (ROI) file name, then click "Save ROI as *.roi" to save the ROI file with extension name *.roi.
- **Reset color**: if there is display problem, click "Reset color" button.

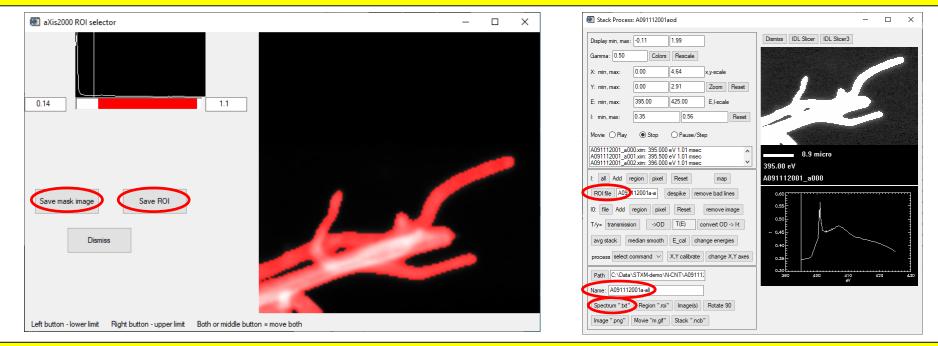

aXis2000 – Stack Process – Save OD Stack, Stack Average Image, and Spectra

aXis2000 → Stacks → Analyze → stack process → select an aligned transmission stack → click "No" for alignment file → suggested zoom value → I0 file (*.*, then choose *.xas lo file) → ->OD → save stack

aXis2000 → Stacks → Analyze → stack process → select an aligned OD stack → click "No" for alignment file → suggested zoom value → avg stack → Store average image in an empty buffer, then save the image → select "I: region" → click draw a sample region on the stack → click "ACCEPT region" → give a file name, then hit "enter" → click "Spectrum ".txt"" to save the sample NEXAFS spectrum

Save OD stack, average stack image

Save Sample Region NEXAFS Spectra



Canadian Centre canadien Light de rayonnement Source synchrotron

aXis2000 – Stack Average Image – Generate Mask and Use Mask for Spectrum

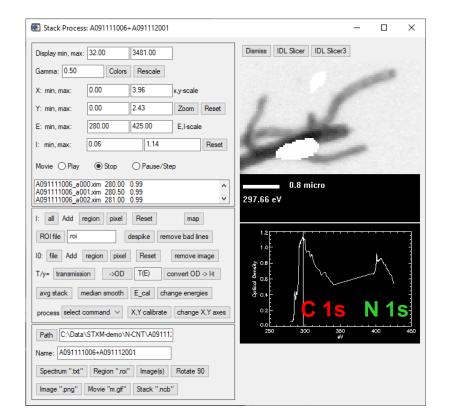
aXis2000 → Read → Images → AXIS → open a stack average OD image → Images → generate mask → threshold → histogram → adjust lower/upper limit to select desired sample region → Save ROI → (optional) edit mask → Save mask image → Choose Buffer → Write → AXIS → save the mask image in *.axb format → Images → Delete region → select regions on mask to replace with zero → repeat "generate mask"

aXis2000 → Stacks → Analyze → stack process → select an aligned OD stack → click "No" for alignment file → suggested zoom value → select "I: ROI file" → load the mask *.roi file → give a file name, then hit "enter" → click "Spectrum ".txt" to save the sample NEXAFS spectrum

aXis2000 – Stack Average Image – Generate Mask and Use Mask for Stack

aXis2000 → Stacks → Analyze → stack process → select an aligned OD stack → click "No" for alignment file → suggested zoom value → process: select command → *image → load a mask image in *.axb format → weight by 1 → select an "I region" to activate the output menu → give a file name, then hit "enter" → click "Stack ".ncb"" to save the background cleaned stack

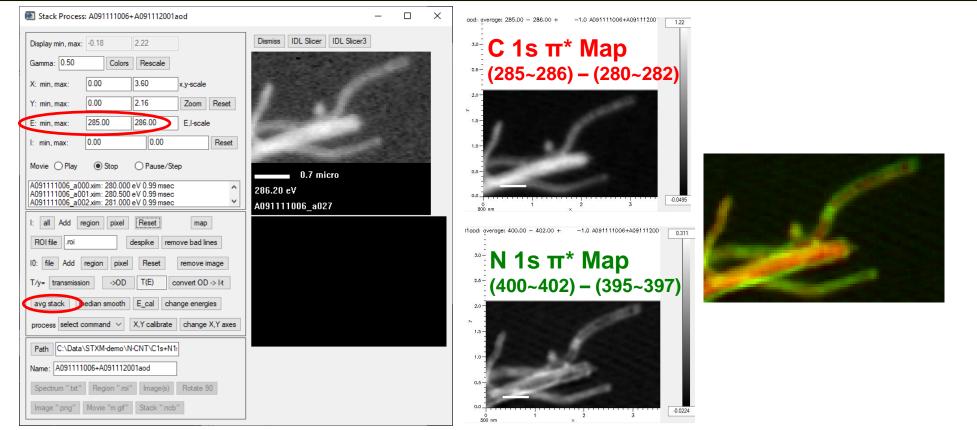
Stack Process	: A091112001	aod			- 🗆 ×	
Display min, max:	0.000000	1.99300]		Dismiss IDL Slicer IDL Slicer3	
Gamma: 0.50	Colors	Rescale			_	
X: min, max:	0.00	4.64	x,y-scale			
Y: min, max:	0.00	2.91	Zoom	Reset		
E: min, max:	395.00	425.00	E,I-scale		and the second sec	
I: min, max:	0.19	0.91		Reset		
Movie O Play	 Stop 	O Pause/Ste	ер			
A091112001 a00	A091112001_a000.xim: 395.000 eV 1.01 msec A091112001_a001.xim: 395.500 eV 1.01 msec A091112001_a002.xim: 396.000 eV 1.01 msec 395.00 eV					
I: all Add re	egion pixel	Reset	map		A091112001_a000	
ROI file .roi despike remove bad lines				1.0		
10: file Add region pixel Reset remove image 0.8					0.8	
T/y= transmission ->OD T(E) convert OD -> It 0.6					0.6	
avg stack m	avg stack median smooth E_cal change energies			0.4		
process select command V DY calibrate change X,Y axes				0.2		
Path C:\Data\STXM-demo\N-CNT\A09111;			:		0.0[] 390 400 410 420 430 47	
Name: A091112	Name: A091112001aod-clean					
Spectrum ".bxt" Region ".roi" Image(s) Rotate 90						
Image ".png" Movie "m.gif" Stack ".ncb						



aXis2000 – Stacks – Change Mesh or Size – Append

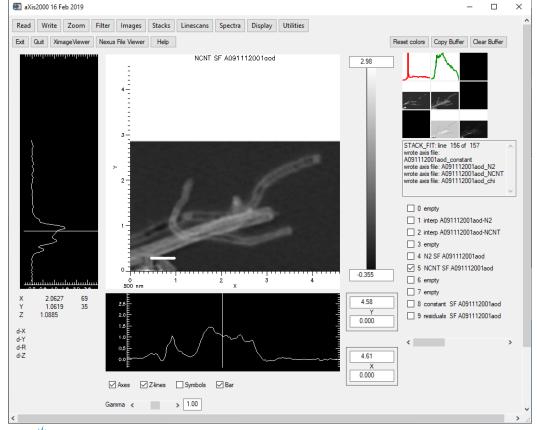
- Stack A091111006: C 1s stack, 4 μm x 2.5 μm, 100 pixel x 63 pixel, step size: 40 nm
- Stack A091112001: N 1s stack, 5 µm x 3.0 µm, 167 pixel x 99 pixel, step size: 30 nm
- Appending stacks procedure
 - > Cut A091112001 X-dimension 33 pixels and Y-dimension 17 pixels to have the same physical size as A091111006
 - > Change mesh for the cut A091112001 to 100 pixel x 63 pixel, then append the two stacks together

aXis2000 → Stacks → Analyze → stack process → select a raw transmission stack → click "No" for alignment file → suggested zoom value → select an "I region" to activate the output menu → give a file name, then hit "enter" → click "Stack ".ncb"" → keep columns(x) > 33 → keep columns(x) < 166 → keep rows(y) > 17 → keep rows(y) < 98


aXis2000 \rightarrow Stacks \rightarrow change mesh or size \rightarrow click "Yes" for change MESH (and keep same image size) \rightarrow input "# of X pixels" as 100 \rightarrow input "# of Y pixels" as 63 \rightarrow save the re-meshed stack \rightarrow Stacks \rightarrow Append \rightarrow select STACK1: A091111006.ncb and STACK2: A091112001tm.ncb \rightarrow save the appended stack file name as A091111006+A091112001.ncb

aXis2000 – Stacks – Elemental/Chemical On/Off Mapping

aXis2000 → Stacks → Analyze → stack process → select an aligned OD stack, e.g. A091111006+A091112001aod.ncb → click "No" for alignment file → suggested zoom value → change the "E: min, max" for pre-edge or post-edge → avg stack → Store average image in an empty buffer, then save the image → change the "E: min, max" again and generate other images → click a post-edge image → Images → Add → Buffer → choose the pre-edge image → scaled by -1 → Write → AXIS → save map



Canadian Centre canadien Light de rayonnement Source synchrotron

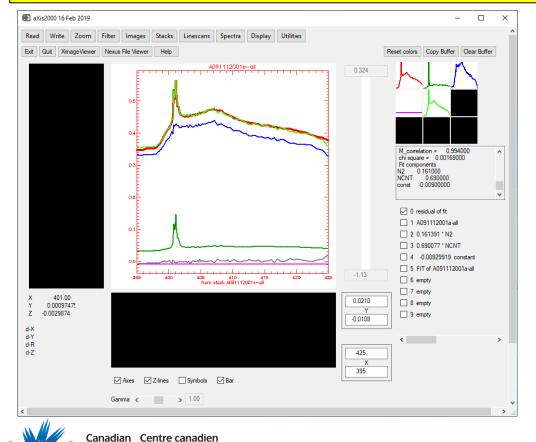
aXis2000 – Stacks – Maps – Stack Fit / SVD

aXis2000 \rightarrow Stacks \rightarrow maps \rightarrow Stack fit or SVD \rightarrow select an aligned OD stack \rightarrow click "No" for parameter file \rightarrow input "# of components (1-8)" \rightarrow choose "Spectrum of component 0" \rightarrow give a very short "Name for component 0" \rightarrow choose the rest component(s) spectrum \rightarrow give a Name of fit parameter file \rightarrow then click "enters" for the rest default settings \rightarrow result is saved and displayed in butters

Output of Stack Fit / SVD

- **Buffer 1**: reference spectrum of **Component 0**, in this case it is N2 spectrum obtained from the stack directly, i.e. internal reference
- Buffer 2: reference spectrum of Component 1, in this case it is NCNT spectrum obtained from the stack directly, i.e. internal reference
- Buffer 4: Component 0 distribution map, in this case it is N2 distribution map
- Buffer 5: Component 1 distribution map, in this case it is NCNT distribution map
- Buffer 8: Constant map (only for Stack Fit)
- Buffer 9: Residuals map

aXis2000 – Stack Fit / SVD – Color Composite Map

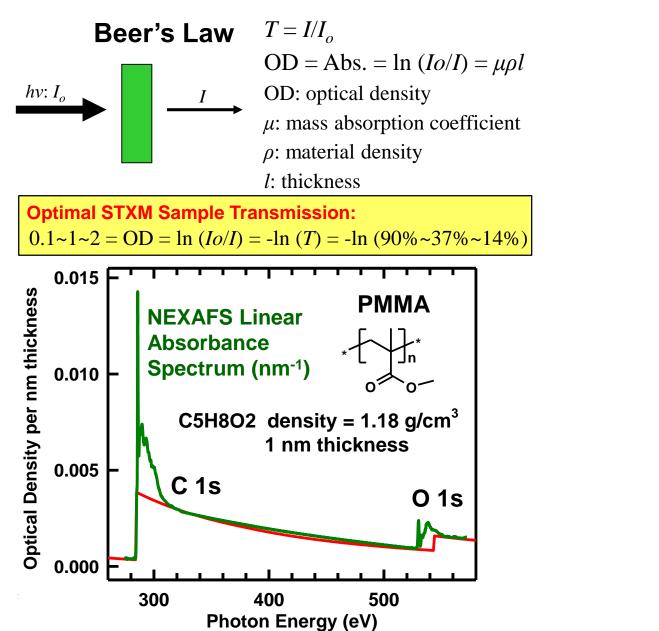

Click "Component 0 map" \rightarrow Images \rightarrow Clip signal \rightarrow histogram \rightarrow click "around 0" and "highest visible intensity" \rightarrow Copy Buffer, and place it to Buffer 1 \rightarrow repeat the procedure for "Component 1" and place it to Buffer 2 \rightarrow in this case of only two components, a third blank image of zero intensity needs to be created \rightarrow click any component image \rightarrow Images \rightarrow Gain \rightarrow Multiply by 0 \rightarrow place the blank image to Buffer 3 \rightarrow click a blank buffer like Buffer 7 \rightarrow Display \rightarrow RGB composite \rightarrow select RED, GREEN, and BLUE images from Buffer 1 to 3 respectively \rightarrow click "Yes" for Autoscale each component \rightarrow save the image in *.tif format

- Buffer 0: color composite map
- Buffer 1: high contrast image of Component 0
- Buffer 2: high contrast image of Component 1
- Buffer 3: blank image with zero intensity

aXis2000 – Spectra Curve Fit – Stack Fit / SVD

aXis2000 → **Read** → **Spectra** → **AXIS** → open a spectrum for all sample regions like A091112001aod-all.txt → click the spectrum → **Spectra** → **Curve fit** → **linear regression (stack fit)** or **SVD** → click "No" for parameter file → input "Number of components" → choose "**Spectrum of component 0**" → give a very short "**Name for component 0**" → choose the rest component(s) spectrum → give a **Name of fit parameter file** → result is displayed in buffers → save spectra by → **Write** → **AXIS**

de ravonnement


synchrotron

Source

Output of Curve Stack Fit / SVD

- **Buffer 1**: the original sample spectrum
- Buffer 2: fitting coefficient times reference spectrum of Component 0, i.e. N2 spectrum
- **Buffer 3**: fitting coefficient times reference spectrum of **Component 1**, i.e. NCNT spectrum
- Buffer 4: Constant (only for Stack Fit)
- Buffer 5: simulated fit spectrum

Principles of STXM Quantitation

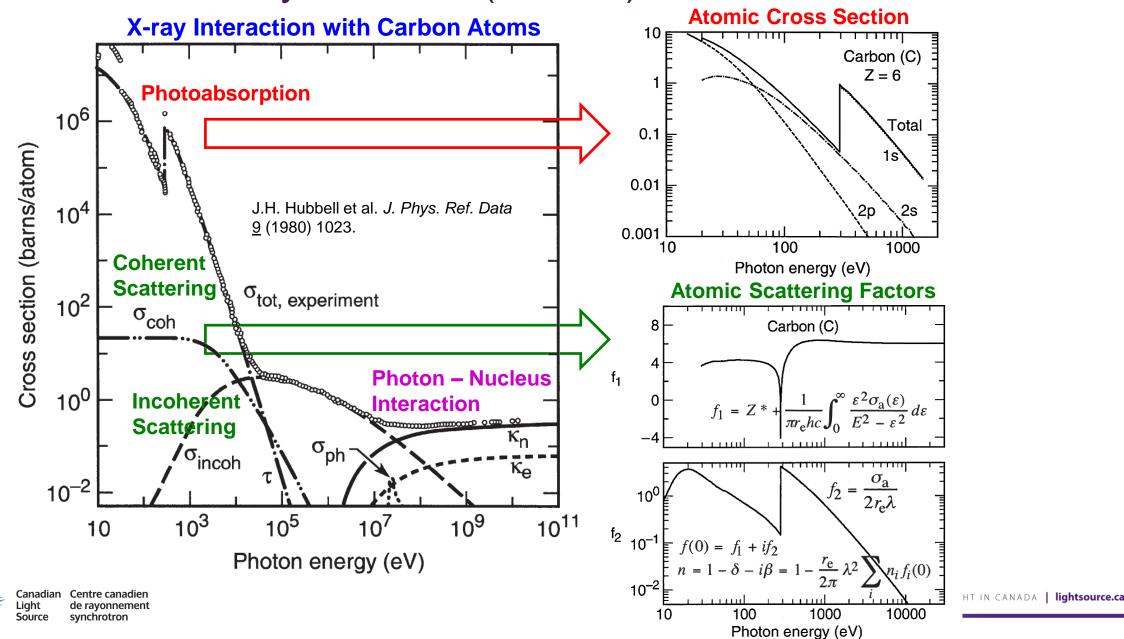
Mass Absorption Coefficient for the Elements

ATOMIC DATA AND NUCLEAR DATA TABLES 54, 181-342 (1993)

X-RAY INTERACTIONS: PHOTOABSORPTION, SCATTERING, TRANSMISSION, AND REFLECTION AT E = 50-30,000 eV, Z = 1-92

B. L. HENKE,* E. M. GULLIKSON, and J. C. DAVIS

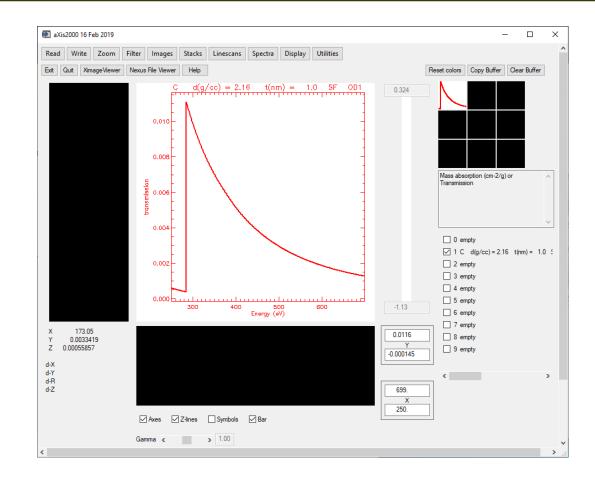
Center for X-Ray Optics Lawrence Berkeley Laboratory Berkeley, California 94720


The primary interactions of low-energy x rays within condensed matter, viz. photoabsorption and coherent scattering, have been described for photon energies outside the absorption threshold regions by using atomic scattering factors.

Calculated Elemental Mass Absorption Coefficient for Compounds

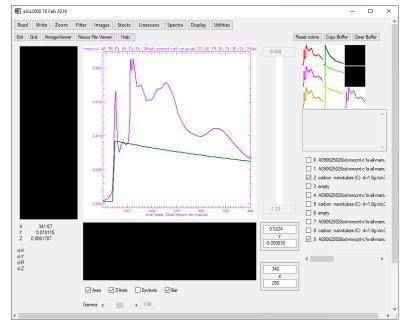
$$\mu = \frac{N_A}{M} \sum_i x_i \sigma_i$$

 N_A : Avogadro's number


- M: molecular weight
- x_i : number of atom *i*
- σ_i : atomic photoabsorption cross section

X-ray – Matter (Atomic) Interaction

aXis2000 – Utilities – Calculate X-ray Parameters (SF)

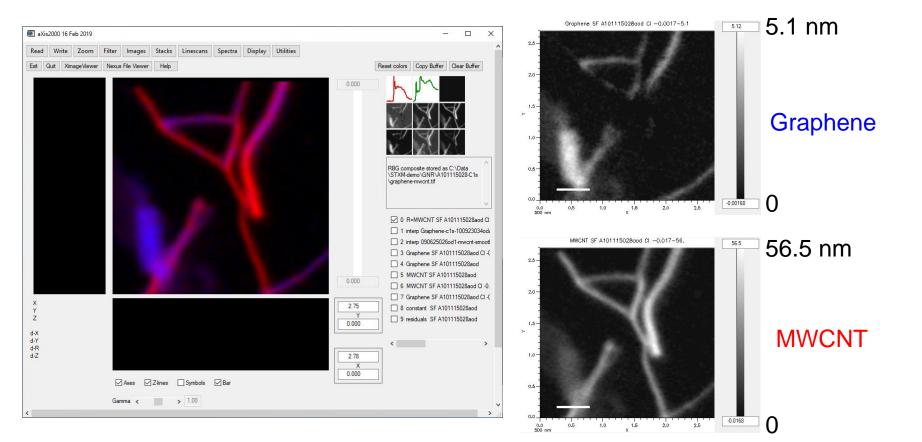

aXis2000 \rightarrow Utilities \rightarrow Calculate X-ray parameters (SF) \rightarrow Formula, e.g. C \rightarrow minimum energy \rightarrow maximum energy \rightarrow transmission \rightarrow density (g/cc), e.g. 2.16 (graphite) \rightarrow thickness (µm): 0.001 \rightarrow click "Yes" to "Convert to OD" \rightarrow accept or update "Header for output file" \rightarrow Write \rightarrow AXIS \rightarrow give a file name and save file

Canadian Centre canadien Light Source synchrotron

aXis2000 – Quantitative Scaling Reference Spectra

aXis2000 \rightarrow Read \rightarrow Spectra \rightarrow AXIS \rightarrow open a pure sample spectrum, i.e. MWCNT at Buffer 1, and a sf file for MWCNT at Buffer 2 \rightarrow click Buffer 1 \rightarrow Spectra \rightarrow Calibrate \rightarrow Y \rightarrow 1 point \rightarrow click pre-edge baseline, and set "New Y" to zero \rightarrow Copy Buffer, and place it at Buffer 4 \rightarrow click Buffer 2 and change the X display limits to 280 – 340 eV \rightarrow Spectra \rightarrow Truncate, and click 280 and 340 eV positions \rightarrow Copy Buffer, and place it to Buffer 5 \rightarrow calibrate pre-edge to zero and place it to Buffer 8 \rightarrow click Buffer 4 \rightarrow Spectra \rightarrow Gain \rightarrow divide by 14 \rightarrow Display \rightarrow Over Plot \rightarrow No Rescale, and choose Buffer 8, until the spectrum and the sf file overlap in both pre-edge and post-edge \rightarrow place the scaled spectrum to Buffer 7 \rightarrow check Buffer 5 pre-edge Y value, and use this value to calibrate Buffer 8 pre-edge Y value \rightarrow place the calibrated and scaled spectrum to Buffer 9 \rightarrow Write \rightarrow AXIS

Canadian Centre canadien Light de rayonnement Source synchrotron


Process of Quantitative Scaling Reference Spectra

- Buffer 1: the original MWCNT sample spectrum
- **Buffer 2**: sf file of MWCNT, i.e. 1 nm thick elemental X-ray absorption profile
- **Buffer 4**: pre-edge zeroed MWCNT sample spectrum
- Buffer 5: truncated sf file, i.e. 280-340 eV
- **Buffer 7**: pre-edge zeroed and scaled MWCNT spectrum
- Buffer 8: pre-edge zeroed and truncated sf file
- **Buffer 9**: pre-edge calibrated and scaled MWCNT spectrum, i.e. 1 nm thick MWCNT NEXAFS spectrum

THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

aXis2000 – Stacks – Quantitative Stack Fit / SVD

aXis2000 → Stacks → maps → Stack fit or SVD → select an aligned OD stack → click "No" for parameter file → input "# of components (1-8)" → choose "Spectrum of component 0", i.e. 1 nm thick graphene spectrum → give a very short "Name for component 0" → choose the rest component(s) spectrum, i.e. 1 nm thick MWCNT spectrum → give a Name of fit parameter file → then click "enters" for the rest default settings → result is saved and displayed in butters

Canadian Centre canadien Light de rayonnement Source synchrotron

Summary: Typical Measure & Analysis of a STXM Stack

MEASURE

Typical Steps:

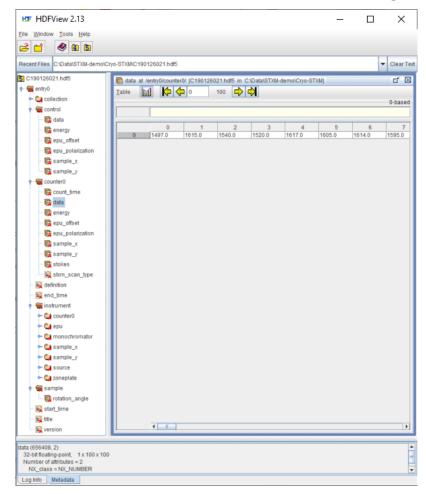
- 1. FIND A SUITABLE AREA
- 2. Check it has suitable properties (based on prior knowledge)
- 3. Measure **stack map**s (few images → few components) or **stacks** (good to look for surprises)
- 4. Check for **damage**
- 5. make sure you have a valid lo measure at SAME TIME (2nd area if needed)
- 6. Check energy calibration

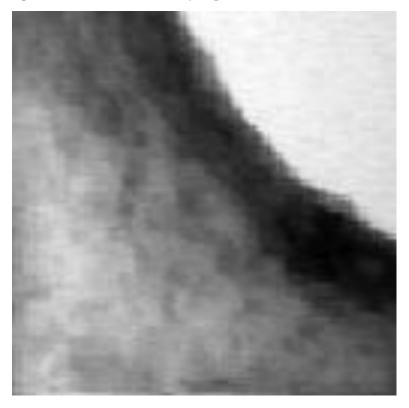
ANALYSIS - STACKS

- Convert from raw data to a binary stack
- Align Jacobsen stack_analyze or Zimba
- Convert to OD

(best to use built-in lo; otherwise, measure lo (point or stack) just before or after)

- Inspect \rightarrow Zimba
- Identify suitable reference spectra external or internal
- Convert ref. spectra to OD1
- FIT Singular Value Decomposition (SVD) versus Stack Fit (SF)
- Clean component maps (remove outliers)
- Display non-rescale versus rescale RGB
- CHECK critical aspects: residuals, residual stacks; extract spectra of component-map-masked regions & fit to the reference spectra & inspect QUALITY of FIT
- Perform Multivariate Statistical Analysis (PCA_GUI, Mantis) & compare


Cryo-STXM


Cryo-STXM Data Format

HDF5 File: e.g. C190126021.hdf5,

Scans, STXM, and Beamline settings

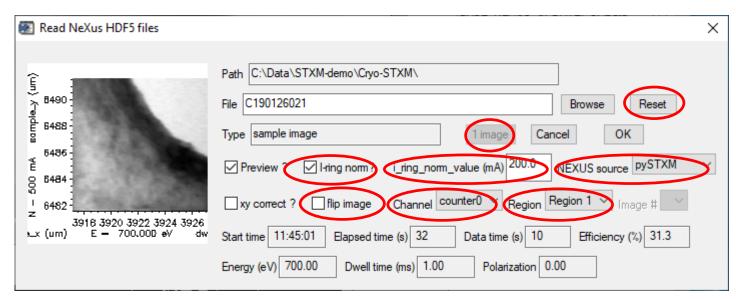
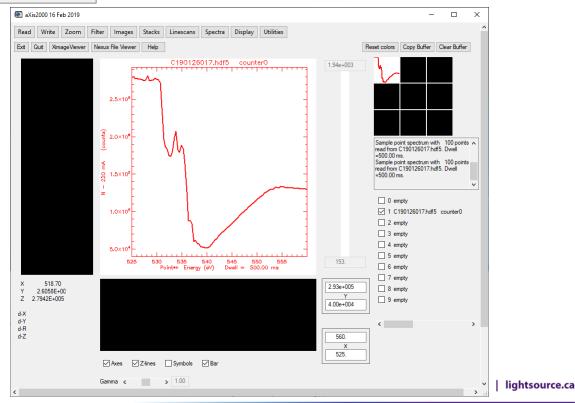


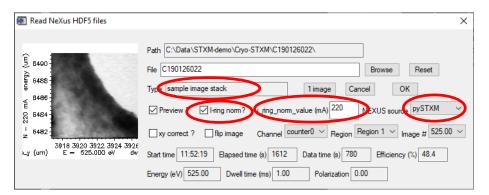
Image Preview File: e.g. C190126021.jpg

Canadian Centre canadien Light de rayonnement Source synchrotron

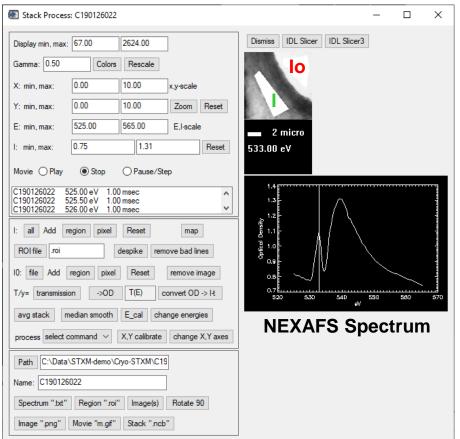
aXis2000 – Read Cryo-STXM Images


- Reset: clear loaded image and information
- 1 image: read an image from a selected photon energy for a stack
- I-ring norm?: normalization to I-ring
- I_ring_norm_value: CLS 220 mA
- **NEXUS source**: CLS pySTXM
- Flip image: flip image up and down
- Channel: select data channel if more than one detector is used
- **Region**: select sample region if more than one image region is defined

Canadian Centre canadien Light de rayonnement Source synchrotron

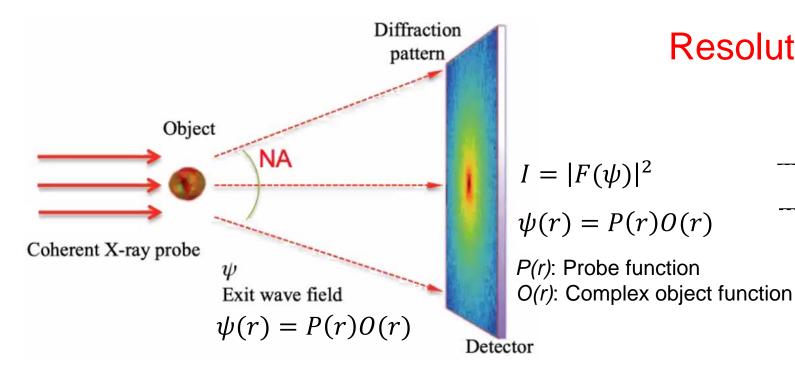

aXis2000 – Read Cryo-STXM Point Spectra

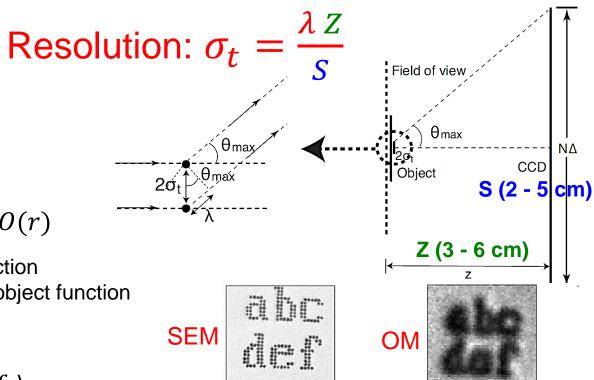
🐼 Read NeXus HDF5 files		×
3.0×10° 2.5×10° 2.0×10° 1.5×10° 5.0×10° 5.0×10° 5.0×10° 5.0×10° 5.0×10° 5.0×10° 5.0×10° 5.0×10° 5.0×500 540 560 560	Path C:\Data\STXM-demo\Cryo-STXM\ File C190126017 Type sample point spectrum 1 image Cancel	
	✓ Preview ? ✓ I-ring norm? i_ring_norm_value (mA) 220.0 NEXUS source pySTXM xy correct ? ☐ flip image Channel Counter0 Region all regions ✓ Image # ✓	~
	Start time 11:02:23 Elapsed time (s) 541 Data time (s) 50 Efficiency (%) 9.2 Energy (eV) Dwell time (ms) ***** Polarization 0.00	


• Note: even select all regions, only one spectrum can be loaded into aXis2000

aXis2000 – Read Cryo-STXM Stacks

- Compile raw Cryo-STXM stack data: aXis2000 → Read → STXM (NeXus)
- Other steps are the same as Ambient-STXM




STXM-Ptychography

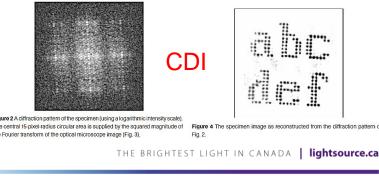
nadian Centre canadier Jht de rayonnemen urce synchrotron

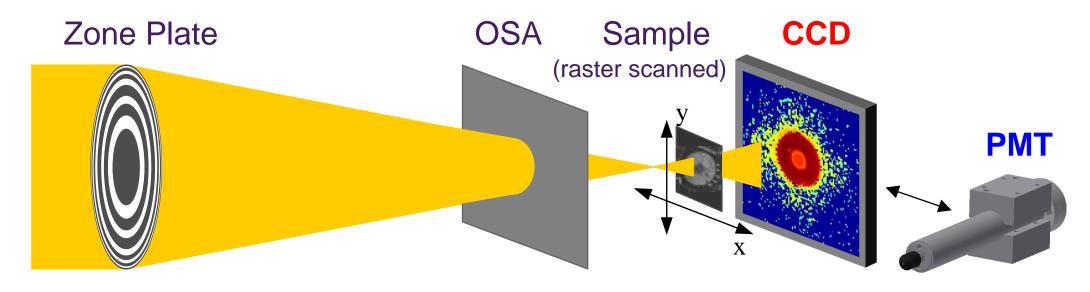
Coherent Diffractive Imaging (CDI)

Complex Refractive Index: $n = 1 - \delta - i\beta = 1 - \alpha\lambda^2(f_1 + if_2)$

Complex Wavefield of Light: $P(r) = Ae^{ikt}$

Complex Object Function:
$$O(r) = e^{iknt} = e^{ik(1-\delta-i\beta)t} = e^{k\beta t} \times e^{-ik\delta t}$$


Absorption: $|O(r)| = e^{-k\beta t}$


nadian Centre canadien Jht de rayonnement urce synchrotron **Diffraction Pattern:** Fourier Transform of Product of Probe and Object. Inverse Fourier Transform and Phase Retrieval to solve Object.

Phase: $Arg\{O(r)\} = -k\delta t$

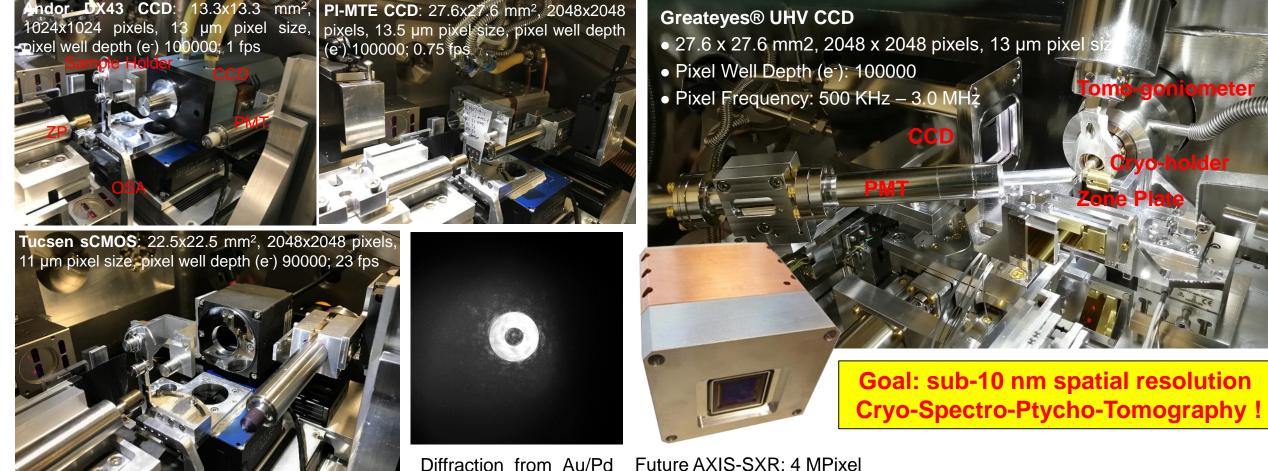
Figure 1 A scanning electron microscope image of the specimen. The specimen Figure 3 An optical microscope image of the specimen. was fabricated by depositing gold dots, each ~100 nm in diameter and 80 nm thick on a silicon micro membrane

From Conventional STXM to STXM-Ptychography

Conventional STXM

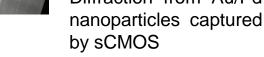
- Sample in-focus
- Point (0D) detector: Scintillator+PMT or PD
- Real-space images
- Diffraction/spot size limited spatial resolution (1.22*Δr_n: ~30 nm)

Canadian Centre canadien Light de rayonnement Source synchrotron

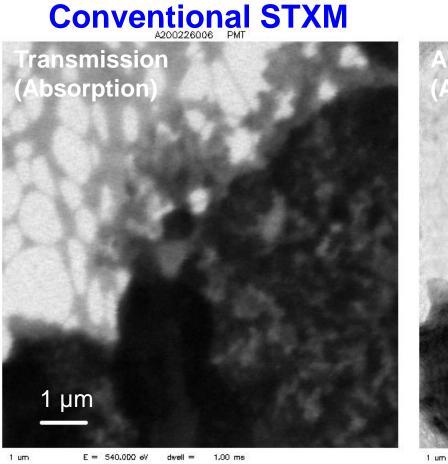

STXM-Ptychography

- Sample in-focus or out-of-focus
- 2D detector: X-ray CCD
- Reciprocal-space images
- Wavelength limited spatial resolution (1 - 2 nm by soft X-rays)
- Large computation in data process

CLS-SM STXM Instrumentation Development Highlights – STXM-Ptychography

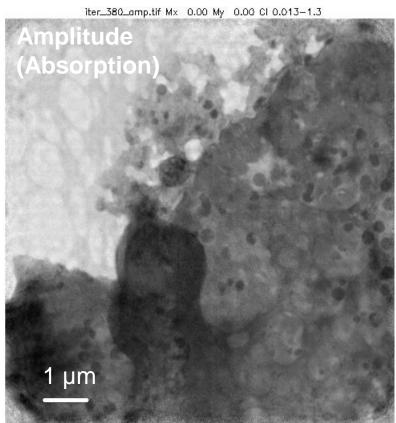

Ambient-STXM

Cryo-STXM



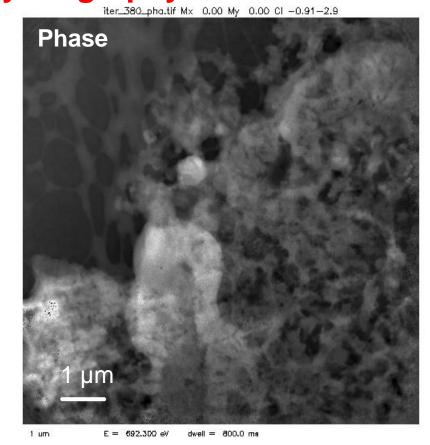
Canadian Centre canadien Light de rayonnement Source synchrotron

m Au/Pd Future AXIS-SXR: 4 MPixel captured Soft X-ray sCMOS camera

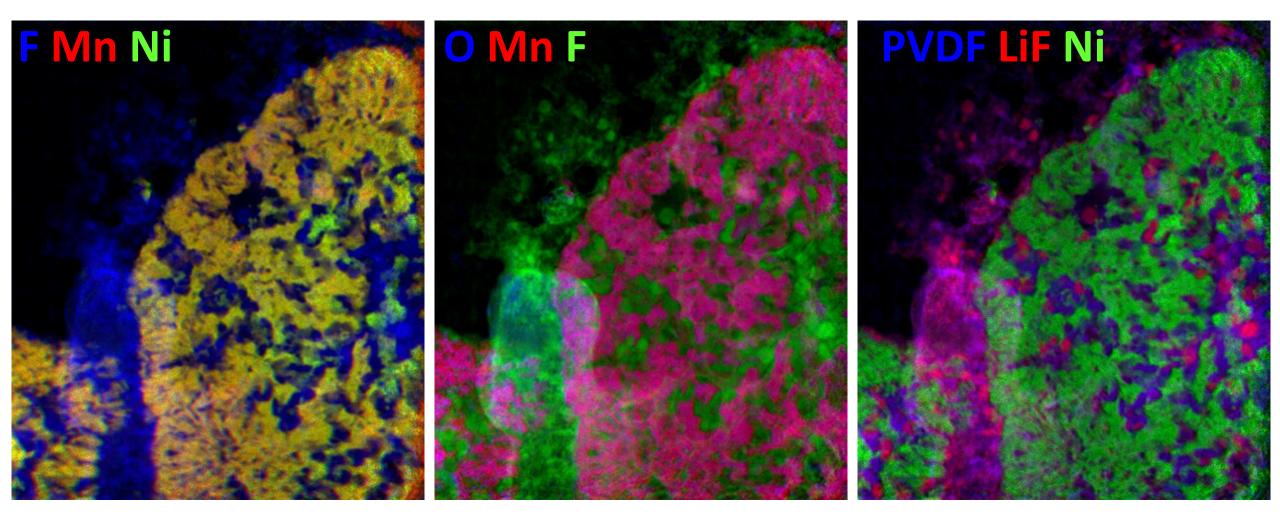

Recent STXM Spectro-Ptychography of LIB Cathode

Pixels: 300 x 300 Resolution: ~40 nm

Canadian Centre canadien Light de rayonnement Source synchrotron



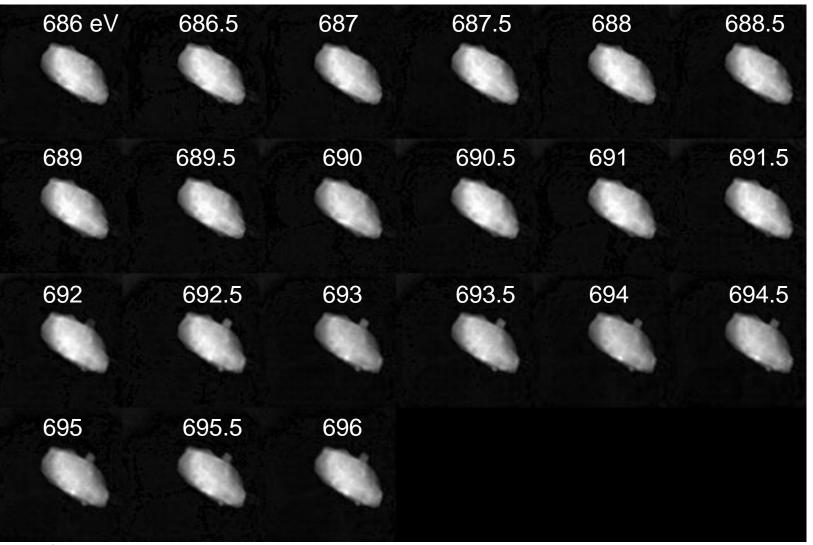
n E = 692.300 eV dwell = 600.0 ms


STXM-Ptychography

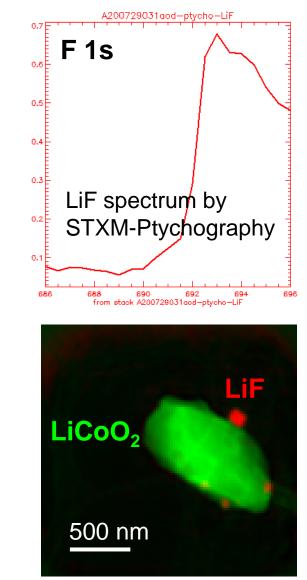
Pixels: 2426 x 2426

Resolution: ~8 nm

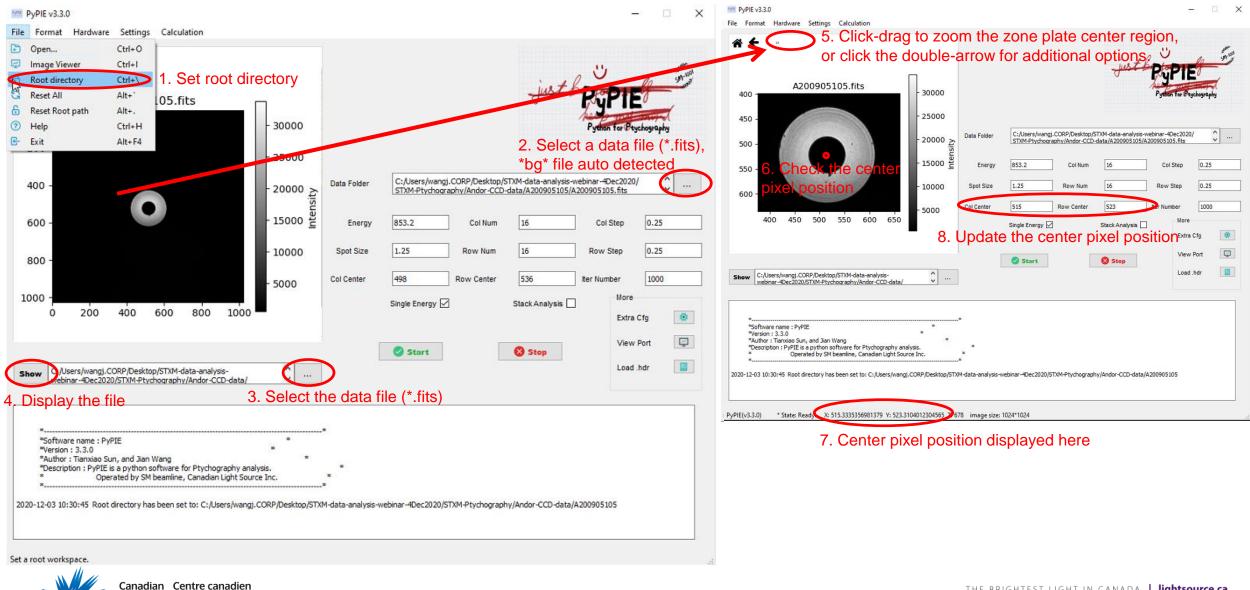
Recent STXM Spectro-Ptychography of LIB Cathode



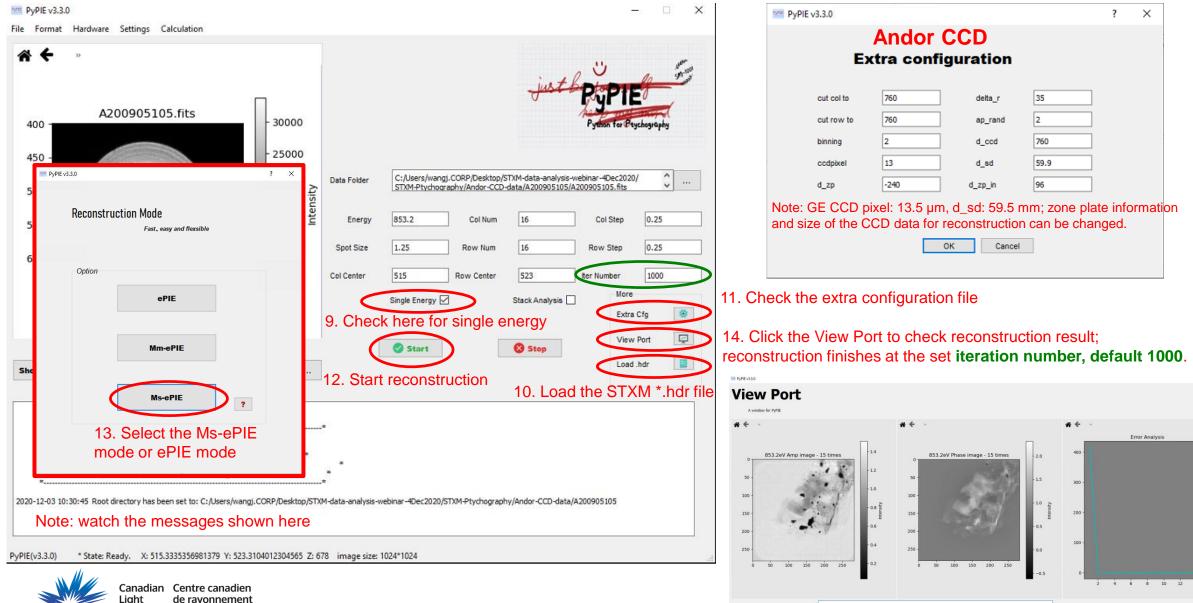
Spatial Resolution: ~8 nm


Canadian Centre canadien Light de rayonnement Source synchrotron

Recent STXM Spectro-Ptychography of LIB Cathode



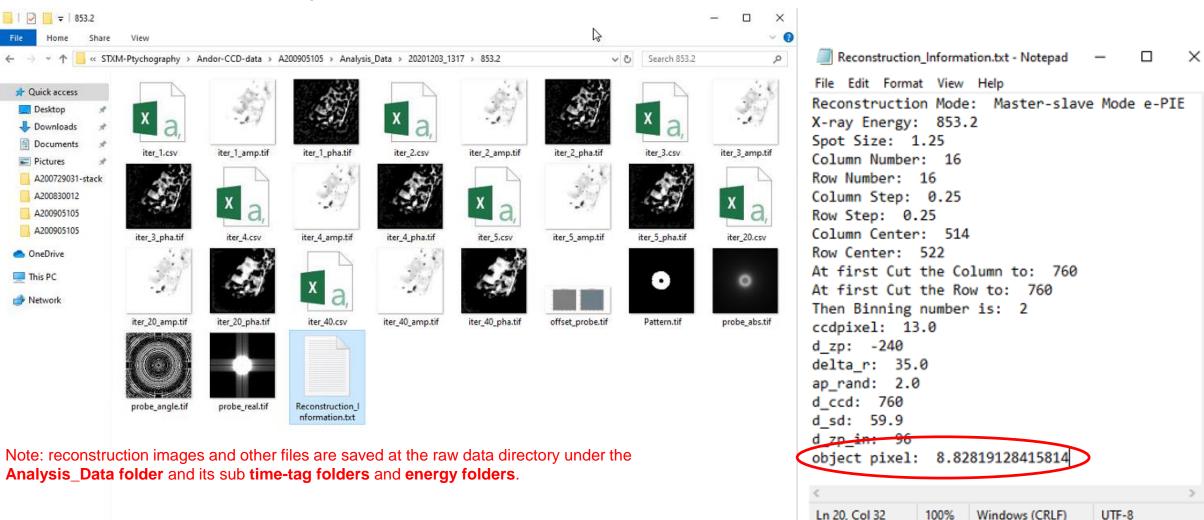
Canadian Centre canadien Light de rayonnement Source synchrotron



THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

PyPIE – Single Energy Data Reconstruction

PyPIE – Single Energy Data Reconstruction



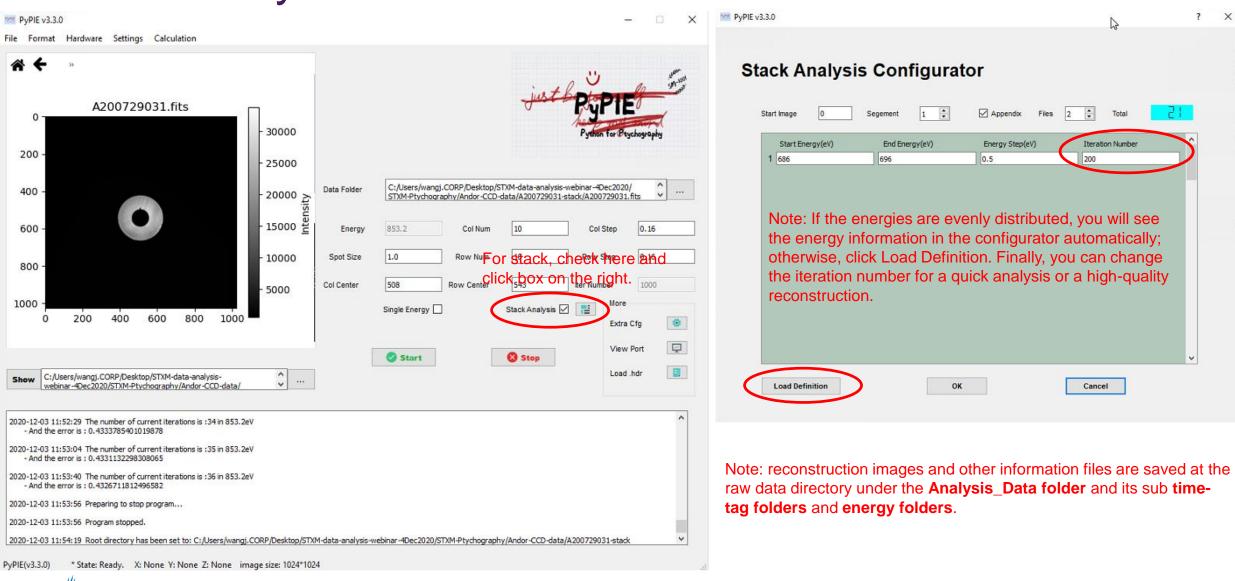
synchrotron

Source

OK Cancel

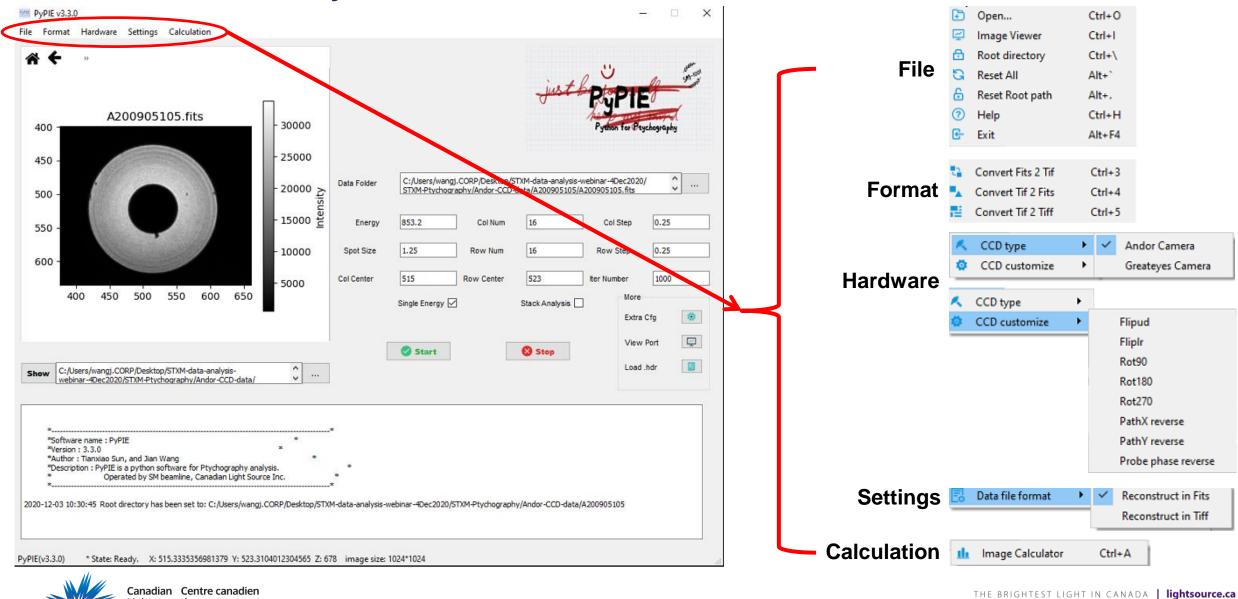
PyPIE – Reconstruction Output

27 items 1 item selected 425 bytes


THE BRIGHTEST LIGHT IN CANADA | lightsource.ca

Note: object pixel size times total reconstructed pixels in each dimension to produce the actual physical size. But sometimes the

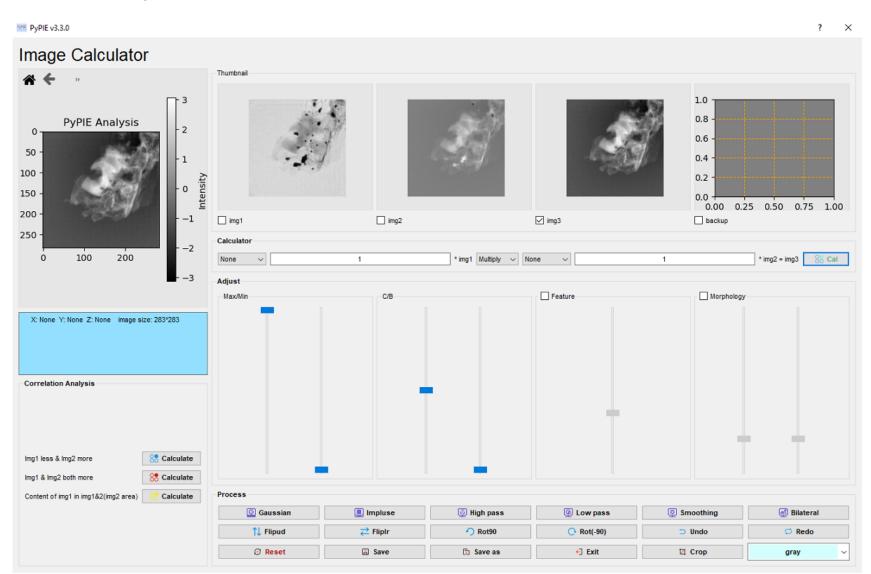
object pixel size is half of the actual size due to data binning.


Ln 20, Col 32

PyPIE – Stack Data Reconstruction

Canadian Centre canadien Light de rayonnement Source synchrotron

PyPIE – Other Useful Functions


de rayonnement

synchrotron

iaht

Source

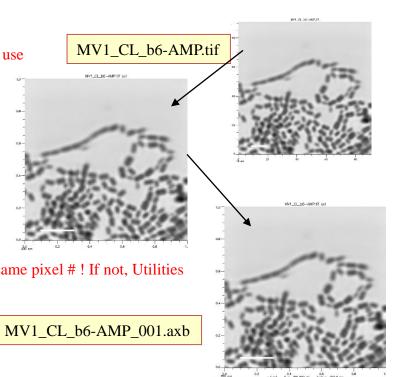
PyPIE – Other Useful Functions

Canadian Centre canadien Light de rayonnement Source synchrotron

aXis2000 – Generating Ptycho Stacks

Convert a set of tif files to a stack starting from ptycho images reconstructed by PyPIE or SHARP (extracted from from the *.cgi file using e.g. recon_result_grey.py, on CLS-SM-ptycho workstation)

1. Read ~ Images ~ Graphics ~ tiff ~ data (aXis200~Zoom, Numerical cut)


2. Images~set xy scale (Use Images ~ Modify X,Y aXes, use object pixel to scale to the image default pixel size of 1µm/pixel)

3. Utilities ~ change energy

4. Utilities ~ change dwell

Make sure all images have the same pixel # ! If not, Utilities ~ Change mesh

5 Write~axis

6. Do the above for each tif file in the stack	E:\data\XRM\Soleil\2019\19-06\06-17\30\
	SS30_1.axb
7. Prepare a *.sl (stack list file)	SS30_2.axb
7. Flepale a '.si (stack list life)	SS30_3.axb
	SS30_4.axb
	SS30_5.axb
	SS30_6.axb
8. Stacks ~ Analyze ~ stack list input	SS30_7.axb
	SS30_8.axb
9. Write out as a stack (*.dat, *.ncb)	SS30_9.axb
9. White out as a stack (".uat, ".iico)	SS30_10.axb
	SS30_11.axb

10. Process as required (alignment, convert to OD, etc, etc)

Canadia Light Source

anadian Centre canadien ight de rayonnement ource synchrotron

Courtesy A.P. Hitchcock